Тема . Векторы и координаты в планиметрии

Длины векторов и скалярное произведение

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела векторы и координаты в планиметрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#97371

(a) Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

(b) Докажите, что сумма квадратов сторон произвольного четырехугольника не меньше, чем сумма квадратов его диагоналей, причем равенство достигается только в случае параллелограмма.

Подсказки к задаче

Подсказка, пункт а

Введите векторы, образующие стороны параллелограмма. Честно напишите через эти 2 вектора сумму квадратов длин диагоналей и сумму квадратов длин всех четырех сторон.

Подсказка 1, пункт б

Введите векторы, образующие стороны четырехугольника, их получится 4. Как проверять то, что требуется в задаче? Нужно выразить все выражения через наши 4 вектора. Как понять, что равенство получается только в случае параллелограмма?

Подсказка 2, пункт б

Если перед вами параллелограмм, то противоположные векторы должны быть равны с обратным знаком, причем это равносильно. Подумайте, как это можно написать, и сведите задачу к этим двум выражениям.

Показать доказательство

(a) Пусть v1,v2  — векторы, образованные сторонами параллелограмма. Тогда диагонали параллелограмма образованы векторами v1 +v2  и v1 − v2.  Наконец, в силу билинейности скалярного произведения

       2        2
(v1+v2) +(v1− v2) = (v1+ v2,v1+ v2)+ (v1− v2,v1− v2)=

                                                  2   2
=((v1,v1)+2(v1,v2)+(v2,v2)+((v1,v1)− 2(v1,v2)+ (v2,v2))= 2(v1 + v2)

(b) Пусть v1,v2,v3,v4  — векторы, образованные сторонами четырехугольника. Тогда векторы, образованные диагоналями четырехугольника, могут быть выражены как v1+ v2,v2+ v3,v3+ v4,v4+v1.  Тогда доказываемое неравенство можно представить в виде

               (v + v − v − v )2 (v − v − v + v )2
v21 + v22 + v23 +v24 ≥-1--22-3---4  +  -1---22-3---4

После раскрытия скобок в правой части, имеем

           (                        )
∑4       1   ∑4
i=1(vi,vi)≥ 4  2i=1(vi,vi)− 4(v1,v3)− 4(v2,v4)

4∑ (v,v)+ 2(v ,v )+ 2(v ,v )≥ 0
i=1 i i     1 3     2 4

(v1+ v3,v1+ v3)+ (v2 +v4,v2+ v4)≥0

(v1+ v3)2+ (v2 +v4)2 ≥0

последнее верно при любых v1,v2,v3,v4,  причем равенство достигается тогда и только тогда, когда v1 = −v3,v2 =− v4,  то есть когда исходный четырехугольник является параллелограмом.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!