Тема . Векторы и координаты в планиметрии

Базовые операции с векторами на плоскости

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела векторы и координаты в планиметрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#69112

В треугольнике ABC  на стороне AB  выбраны точки K  и L  так, что AK = BL,  а на стороне BC  — точки M  и N  так, что CN = BM.  Докажите, что KN + LM ≥ AC.

Подсказки к задаче

Подсказка 1

Давайте обратим внимание на схожесть расположения каждого из отрезков нашего неравенства. Каждый из них включен в треугольник с вершиной B. Попробуйте выразить вектора AC, KN и LM через вектора выходящие из вершины B.

Подсказка 2

Не просто же так в условии сказано, что BL=KA, а BM=NC. Подумайте, почему эти же равенства будут верны и в векторном виде и подставьте их в выражения, которые мы находили ранее. Подумайте, как теперь мы можем связать вектора AC, KN и LM.

Подсказка 3

Если до этого вы всё сделали правильно, то должны были получится векторные равенства: KN = BN - BK, LM = NC - KA. Если сложить два векторных равенства, то получим KN+LM=(BN+NC)-(BK+KA)=BC-BA=AC. Подумайте, почему данное векторное равенство доказывает неравенство из условия.

Показать доказательство

Рассмотрим для определенности конфигурацию, изображенную на рисунке

PIC

Тогда имеем следующие равенства:

(
|||  −A→C =−B−→C − −B→A
{  −−K→N = −−B→N − −−B→K
|||(  −−→   −−→   −→
   LM = BM − BL

Поскольку −−→   −−→
BM = NC,  а −→   −−→
BL = KA,  то сложив второе и третье равенства получим

−−→   −−→   (−−→   −−→ )  (−−→   −→ )  −−→   −→   −→
KN + LM =  BN + BM  −  BK + BL  =BC − BA = AC

Следовательно

|−A→C |= |−−L→M +−K−N→|≤ |−L−→M |+ |−K−→N |

Заметим, что при таком решении не существенно, как расположены точки K, L, M  и N.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!