Тема СТЕРЕОМЕТРИЯ

Тела вращения .02 Конус

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела стереометрия
Разделы подтемы Тела вращения
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#104698

Гора имеет форму прямого кругового конуса с вершиной в точке C  . Точка O  — центр основания, точка A  лежит на окружности основания конуса, а точка B  — на отрезке CA  , причем CA =180,AB = 20,OA= 30  . Железная дорога проложена по кратчайшему пути вокруг горы из точки A  в точку B  . Точка H  — ближайшая к вершине горы из всех точек железной дороги. Найдите длину пути BH  (по железной дороге).

Показать ответ и решение

PIC

Кратчайшим путём вокруг горы на развёртке конуса будет отрезок AB  . Точка H  — ближайшая к вершине C  , а значит CH  — высота в треугольнике ABC  . Длина окружности основания равна 2πOA = 2π  . 30 =60π  , поэтому

∠ACB = 2πOA-= 60π= π = 60∘
        CA    180  3

Итак, в треугольнике ABC  известны длины сторон AC =180,BC =160  и ∠C = π3  , а надо найти BH  . По теореме косинусов

AB =∘AC2-+-BC2-− 2-⋅AC-⋅BC-⋅cos∠C-= √32400+-25600-− 28800-=20√73.

По теореме синусов

                 √-
sin∠C-= sin∠B-;  ---3√---= sin∠B-;
 AB     AC     2⋅20  73    180

откуда

        9√3-           7
sin∠B = 2√73;  cos∠B = 2√73

Наконец, треугольник CBH  прямоугольный и

BH = BC ⋅cos∠B = 160⋅-√7--= 5√60
                   2  73    73
Ответ:

√560-
  73

Ошибка.
Попробуйте повторить позже

Задача 2#83857

Коническое (пожарное) ведро было заполнено водой до самого края.

PIC

В него положили шар, причем он полностью покрылся водой. Покажите, что при этом из ведра вылилось не более половины бывшей там воды.

Источники: КФУ - 2024, 11.4 (см. malun.kpfu.ru)

Показать доказательство

Обозначим радиус шара через r,  радиус основания конуса через R,  а высоту конуса — через h.  Тогда объём конуса равен

   1  2
V = 3πR ⋅h

Объём шара

   4
v = 3πr3

Отношение этих объемов равно

      3
v-= 4r2-
V   R h

Можно считать, что верхняя точка шара находится на поверхности воды, иначе воды выльется ещё меньше.

PIC

Из подобия прямоугольных треугольников AF O  и AMB  имеем

h− r  √h2-+R2
-r--= ---R----

Возведем равенство в квадрат, получим

(    )2    2   2      2
 h − 1  = h-+R2--= 1+ h2-
 r          R        R

1− 2h + h2 =1 + h2
    r  r2      R2

h2−-2rh-  h2-
  r2   = R2

      h2r2
R2 =h2-− 2rh

Значит, отношение объёмов равно

      (      )
v-= 4r3-h2−-2rh-= 4r(h−-2r)= 4(t− 2t2)= 4t(1− 2t),
V      h2r2h         h2

где t= r < 1.
   h   2  Максимум этой функции достигается в вершине параболы, то есть при t= 1
   4  и составляет

4t(1− 2t) =4⋅ 1 (1− 1) = 1
           4     2    2

Заметим, что максимум достигается при h = 4r;  при этом

       16r4
R2 = 16r2−-8r2-=2r2

l2 = h2+ R2 = 18r2 =9R2

l= 3R

Ошибка.
Попробуйте повторить позже

Задача 3#77211

В правильной четырёхугольной усечённой пирамиде ABCDA  B C D
      1 1 1 1  даны ребро AB =2  и ∠A AC = 45∘
  1 . Диагональ A C
 1  пирамиды служит осью конуса, вершина которого находится в A1  , а окружность основания касается трех граней угла C  , причем грани ABCD  в ее центре. Найдите радиус r  основания конуса.

Показать ответ и решение

PIC

Пусть точка H  — центр ABCD  , а O  — центр окружности основания конуса. AA1 = k,A1P = 2− k  . Продлим стороны AA1,BB1,CC1,DD1  до пересечения в точке P  . Введём прямоугольную декартовую систему координат, как на рисунке: H  — начало координат, ось Ox  направим вдоль HC  , Oy  вдоль HD  , Oz  вдоль HP  .

Сделаем гомотетию с центром в точке C  так, чтобы центр окружности перешёл в точку A1  . Сама же точка     (  √-         )   (  √-    )
      − 2 +kcos(45∘)   |−  2+ k√2|
A1 =|(       0     |) = |(    0   |)
         kcos(45∘)          √k2

Найдём уравнение плоскости α  , содержащую окружность конуса с центром в точке A1  . Так как       (2√2− √k)
A1C = ||   0  2||
      (  −√k  )
           2 — служит осью конуса, то в качестве вектора нормали возьмём              (    )
--   √-----  |4− k|
nα =  2A1C = ( 0  )
               −k .

Так как A  ∈α
 1  , то

     -k-  √-    k--
(4− k)(√2-−  2)− k√2 + Dα = 0

    √ -    √-    √-
Dα =  2k2 − 3 2k+ 4 2

              √-    √ -   √-
α:(4− k)x− kz+  2k2− 3 2k +4 2 =0

Найдём уравнение плоскости β = (PBC)  :

P ∈ β : (| √2C + D = 0
B ∈ β : { − √2βB + βD =0
      |( √ -  β   β
C ∈ β :   2A β + Dβ = 0

Возьмём в качестве Dβ = −√2  , тогда получим     ( Aβ)  ( 1 )
nβ = |( Bβ|) =|( −1|)
      Cβ     1

           √ -
β :x− y+ z−  2= 0

Найдём уравнение прямой l =α ∩β
1  :

{ x − y +z− √2 =0
  (4− k)x − kz+ √2k2− 3√2k+ 4√2-= 0

Сложив первое уравнение, умноженное на k  , со вторым и, выразив x  , получим         √-
x = ky− -2k2+ √2k− √2
    4    4  . Откуда можно подставить в первое уравнение и выразить z  . Тогда уравнение прямой l1  в параметрическом виде:

    (     √- 2  √-   √-
X : ||{ k4t− -24k-+  2k−  2
Y : | t(    )   √-    √-   √ -
Z : |(  1− k4 t+ -24k2−  2k+ 2 2

Её направляющий вектор     (    )
    |  k4 |
v1 = || 1 ||
    (1− k)
        4 .

Пусть T  — точка касания окружности с плоскостью β  , тогда T  лежит на прямой l1  ,      (          √-2         )
---- |      k4t− -2k4--+√k2-    |
A1T =|( (    )   √t        √ |)
        1− k4 t+ -2k42-−√3k2-+2  2 , (A1T,v1)= 0  :

  (     -       )           (           -            )
k  k   √2k2  -k-     (    k)  (   k)   √2k2  -3k-   √-
4  4t−   4 + √2- + t+  1− 4    1− 4 t+   4  −√2-+ 2 2 = 0

   √ -    √-     √ -    √-
t= --2k3-− 6-2k2+-16-2k− 16-2
          k2− 4k+ 16

Тогда      (      √-           )
           2-2k(2− k)
---  ||| √- 3k2− 4k2 +16     |||
AT = || -2(k-−26k-+-16k−-16)||
     |(   2√k2(−k24k− +6k16+8)   |)
         --k2−-4k-+16--

Уравнение плоскости γ = (ABC) :z =0  :

Найдём уравнение прямой l2 =α ∩γ  :

{
  z =0        √-     √-   √ -
  (4− k)x − kz+ 2k2− 3 2k+ 4 2= 0

Подставляя z = 0  во второе уравнение и выражая x, получим параметрическое уравнение прямой l2  :

   (  √- 2   √-   √ -
X :|||{  -2k-−-3-2k+-4-2
Y :|  t     k− 4
Z : ||( 0

Её направляющий вектор     (0)
v2 = |(1|)
     0 .

Пусть F  — точка касания окружности с плоскостью γ  , тогда F  лежит на прямой l2  ,      ( √2k2)
---- || 2kt−8||
A1F =|(  -k-|)
       −√2- , (------)
 A1F,v2 = 0⇔ t= 0

В силу симметрии картинки относительно плоскости APC  , если окружность касается плоскости P BC  , то она будет касаться и плоскости P DC  , поэтому для касания всех трёх плоскостей, содержащих граней необходимо и достаточно выполнения уравнения:

 ----   ----
|A1T|2 = |A1F|2

( √2k2)2   k2   (2√2k(2− k))2 ( √2(k3− 6k2+ 16k − 16))2 (2√2(k2− 6k +8))2
  2k-− 8  + 2-=  k2−-4k+16   +  ----k2−-4k+-16-----  +  --k2−-4k-+16--

4k2(k2-− 4k+-8)= 2(k4−-8k3+-28k2−-48k-+32)
   (2k− 8)2          k2− 4k+ 16

k2(k2− 4k +8)  2(k− 2)2(k2 − 4k+ 8)
--(k−-4)2---= ----k2−-4k-+16---

   2           2
--k--2 =-22(k−-2)--
(k − 4)  k − 4k+ 16

   -32-
k= k − 4 +12
[ k1 =4(2− √3)
  k =4(2+ √3)>2 − не подходит
  2

Тогда

         ∘--2k4----k2-  ∘ -----√--
R= |AF|=  (2k−-8)2 +-2 =2  40− 23 3

Рассмотрим △CA1F :CH = √2.

    √ -    √-   √-
F  =--2k2− 3-2-+4-2 = 8√2-− 5√6-⇒ FH = |F |= 5√6− 8√2
 x        k− 4                       x

              R   CF       ∘-2-----√--
△CA1F ∼ COH ⇒ -r = CH ⇒ r=   13(5− 2 3)
Ответ:

 ∘-2----√---
  13(5− 2 3)

Ошибка.
Попробуйте повторить позже

Задача 4#70490

Угол при вершине в осевом сечении конуса равен 60∘ . Снаружи этого конуса расположены 11 шаров радиуса 3, каждый из которых касается двух соседних шаров, боковой поверхности конуса и плоскости его основания. Найдите радиус основания конуса.

Источники: Ломоносов-2022, 11.4 (см. olymp.msu.ru)

Показать ответ и решение

PIC

Пусть O  — центр окружности основания конуса, радиуса R,Q1  - центр одного из шаров радиуса 3,H1  — точка касания этого шара с плоскостью основания, H2  — точка касания соседнего шара с плоскостью основания конуса. Значит, из треугольника AQ1H1  можем получить

AH1 =--(-Q1H1-∘) = 3√--=√3
     tg 45∘+ 302--    3

PIC

Так как каждый шар касается двух соседних, то точки касания этих шаров с плоскостью основания конуса расположены в вершинах правильного 11-угольника вписанного в окружность с центром в точке O,  радиуса OH1  и стороной, равной 2⋅3= 6.  Поэтому

            180∘-
Q1H =OH1 sin 11 , где OH1 = R+ AH1

     Q1H           3     √-
R = sin180∘-− AH1 = sin-180∘− 3
       11            11
Ответ:

---3--− √3
sin 18101∘

Ошибка.
Попробуйте повторить позже

Задача 5#74506

В 2022 году исполняется 65 лет запуска первого искусственного спутника Земли (ИСЗ). В настоящее время для обеспечения бесперебойной работы сотовой связи, систем теле и радиовещания используются различные виды спутников, находящихся на различных орбитах, на различных высотах.

Зоной покрытия спутника назовем часть поверхности земного шара, в пределах которой обеспечивается уровень сигналов к спутнику и от него, необходимый для их приема с заданным качеством в конкретный момент времени. Как правило, эта часть поверхности ограничивается окружностью, проходящей по линии видимого горизонта. На рисунке линия проходит через точку Г:

PIC

a) Определите площадь земной поверхности (в км2  ), которая является зоной покрытия спутника, находящегося на высоте H = 500  км относительно земной поверхности, считая ее сферой радиуса R = 6400  км с центром в точке O.

б) Найдите все значения n >1,  для которых на поверхности земли можно расположить окружности C1,...,Cn,  каждая из которых внешним образом касается окружности C0,  с центром в точке A  и радиусом r< R,  каждая из них является границей зоны покрытия ИСЗ, находящегося на той же высоте H  , что и спутник с зоной покрытия C0.  Каждая из зон покрытия Ci  должна внешним образом касаться окружностей C0  и Ci+1,i=0,1,...,n− 1,  т.е. первая касается C0  и C2,  вторая — C0  и C3,  и т.д. Окружность Cn  должна касаться C0  и C1.

Источники: ШВБ-2022, 11 (см. olymp.bmstu.ru)

Показать ответ и решение

PIC

а) Зона покрытия — часть сферы, лежащая внутри конуса. S = 2πR⋅h  , где h= A3  — высота сегмента. h =R − R cosα  , здесь угол  α  — угол между радиусом ОГ и линией ОА, соединяющий центр сферы с центром окружности, которая является линией пересечения сферы и конуса.

Тогда площадь равна

                     (        )
S = 2πR2(1− cosα)= 2πR2 1−--R-- = 2πR2⋅--H-- ≈
                         R +H         R + H

       2 500-     2 10  4096-  5          5           2
≈6 ⋅6400 ⋅6900 =6400 ⋅23 ≈ 23 ⋅10 ≈178,09⋅10 = 17809000 км

б) Пусть О — центр сферы, В — точка касания первой и второй окружности, А и A1  их центры этих окружностей, З,З1,З2  — точки пересечения радиусов R  со сферой. Обозначим α  — угол между ОЗ и ОВ. Тогда       r-
sinα = R,ЗЗ1 = 2r.

PIC

В правильной пирамиде ОЗЗ1З2  плоские углы при вершине равны 2α,  двугранный угол при ребре О3 равен 360∕n.  Опустив перпендикуляры из точек З1  и З2  на ребро О3 в точку H, треугольники ОЗ,З1  и ОЗЗ2  равны (по трем сторонам), т.к. две стороны равны R,  а третья 2r.

PIC

                                ∘ --------
НЗ1 =Н З2 = 2rcosα= 2r∘1−-sin2α =2r 1− ( r)2
                                      R

                                 ∘----r2-
⇒ 2r=ЗЗ1 =ЗЗ2 =2⋅Н З1⋅sin(180∕n)= 4r 1− R2-sin(180∕n)

 ∘ ------                        ( ∘ -----)
      r2                                r2
2  1− R2 sin(180∕n)= 1⇒ sin(180∕n)= 1∕(2 1− R2) > 1∕2⇒  n< 6
Ответ:

а) 17809000

б) 2,3,4,5

Ошибка.
Попробуйте повторить позже

Задача 6#101478

Искусственный спутник (ИСЗ) движется по круговой орбите вокруг Земли (имеет форму шара) на высоте H,  равной радиусу Земли R = 6372  км, с периодом обращения T = 4  ч и постоянной угловой скоростью    2π
w = T .  Для того, чтобы можно было наблюдать за спутником с поверхности Земли, он должен находиться выше плоскости горизонта. Определите:

а) продолжительность наблюдения спутником (в минутах) от момента его появления над горизонтом до момента захода за горизонт, если траектория ИСЗ проходит ровно над головой наблюдателя;

б) плоский угол при вершине конуса обзора поверхности Земли с ИСЗ (в градусах).

Источники: ШВБ - 2021, 11 (см. olymp.bmstu.ru)

Показать ответ и решение

Пусть наблюдатель находится в точке H.  AB  — линия пересечения плоскости горизонта и плоскости орбиты. Спутник проходит над головой наблюдателя.

PIC

При движении спутника из точки A  в точку С по дуге окружности, его проекция на Землю двигается из точки D  в точку H.  Угловая мера этой дуги l= L∕2  равна величине центрального угла. Учитывая симметрию, получим время наблюдения

   L   2φT    φT||            φ ⋅240
t= w-= 2π-=  π-||          = --π--
                T=4ч=240мин

Угол находим из прямоугольного треугольника

cosφ = -R---= 1⇒  φ= π
      R+ H   2      3

следовательно, t= φ⋅240= π⋅240= 80
    π     3π  мин.

Угол обзора участка Земли с орбиты равен углу 2γ = 2(π − φ) =π − 2π = 1π
      2          3   3  или 60∘ градусов.

Ответ:

а) 80  минут, б) 60∘ градусов

Ошибка.
Попробуйте повторить позже

Задача 7#33674

На рёбрах AC,BC, BS,AS  правильной треугольной пирамиды SABC  с вершиной S  выбраны точки K,L,M,N  соответственно. Известно, что точки K,L,M,N  лежат в одной плоскости, причём KL = MN = 2,KN = LM = 18  . В четырёхугольнике KLMN  расположены две окружности Ω1  и Ω2  , причём окружность Ω1  касается сторон KN,KL  и LM  , а окружность Ω2  касается сторон KN,LM  и MN.  Прямые круговые конусы ℱ1  и ℱ2  с основаниями Ω1  и Ω2  соответственно расположены внутри данной пирамиды, причём вершина P  конуса ℱ1  лежит на ребре AB  , а вершина Q  конуса ℱ2  лежит на ребре CS  .

а) Найдите ∠SAB

б) Найдите длину отрезка CQ  .

Источники: Физтех-2019, 11.7, (см. olymp.mipt.ru)

Показать ответ и решение

Противоположные стороны четырёхугольника KLMN  попарно равны, так что он параллелограмм. Поскольку плоскость (KLMN  )  пересекает плоскости (ABC )  и (ABS )  по параллельным прямым KL  и MN  , эти прямые параллельны прямой пересечения этих плоскостей, то есть AB  . Аналогично, NK ∥LM ∥ SC  . В правильной треугольной пирамиде скрещивающиеся рёбра перпендикулярны друг другу, поэтому SC ⊥AB  , а KLMN  − прямоугольник. Следовательно, радиусы окружностей Ω1  и Ω2  равны 1.

Отсюда также следует, что прямоугольник KLMN  симметричен относительно плоскости α  , содержащей ребро SC  и середину AB  . Тогда и конусы ℱ1  и ℱ2  также симметричны относительно этой плоскости. Поэтому P  — середина AB  .

PIC

Обозначим через X  и Y  середины сторон KL  и MN  соответственно, а через O1  и O2− центры окружностей Ω1  и Ω2  соответственно; эти четыре точки лежат на оси симметрии прямоугольника KLMN  , параллельной KN  , а значит — в плоскости α  . Более того, XY ∥SC  , то есть треугольники PCS  и P XY  подобны.

Пусть AB = BC = CA = 2a,SA =SB = SC =ℓ,ν = a∕ℓ  . Тогда CP = a√3,SP = √ℓ2−-a2  . Поскольку XY = KN = 18  , из подобия получаем

XP-   XY-
 CP = CS

XP    18     18√3a     √-
a√3-= ℓ-,XP = --ℓ-- =18ν 3

Аналогично,

                       √------
YP-= XY-,YP-= 18,Y P = 18-ℓ2−-a2= 18∘1-−-ν2
SP   CS  SP   ℓ          ℓ

C другой стороны, так как конус ℱ1− прямой, имеем P O1 ⊥ XY  , причём XO1 = 12KL  =1,YO1 =XY − XO1 = 17  . Отсюда

  2   2     2     2  (   2     2)  (   2     2)    2     2   2(    2   2)
17 − 1 =O1Y  − O1X =  O1Y + O1P  − O1X  + O1P  = PY − PX  = 18  1− ν − 3ν

         2(    2)
16⋅18= 18 1 − 4ν

    1
ν = 6

            AP               1
∠SAB  =arccosAS-= arccosν = arccos6

Итак, ℓ= 6a  , и из подобия имеем

-2 = KL-= CX-= 1− XP-= 1− XY- =1− 18 =1− 3,
2a   AB   CP      CP      CS       ℓ     a

откуда a= 4  и ℓ= 24  . Пусть P O1  пересекает SC  в точке H  . Тогда PH  — высота треугольника SCP  , причём (поскольку XY ∥CS  ) CCHS-= XXOY1-= 118-  . Значит, CH = S1C8 = 43  . Поскольку O2Q⊥ XY,HO1O2Q  — прямоугольник, так что HQ = O1O2 = 16  . Отсюда CQ = CH + HQ = 532  .

Ответ:

а) ∠SAB = arccos1;
            6

б)     52
CQ=  3

Ошибка.
Попробуйте повторить позже

Задача 8#39887

На плоскости основания конуса с высотой, равной радиусу основания, дана точка (вне конуса), удалённая от окружности основания на расстояние, равное двум радиусам основания. Найдите угол между касательными плоскостями к боковой поверхности конуса, проходящими через данную точку.

Источники: ПВГ-2016, 11.4 (см. pvg.mk.ru)

Показать ответ и решение

PIC

Пусть центр основания радиуса r  — точка O  , точка рядом A  , а S  — вершина конуса. Пусть также AO  пересекает окружность в E,F, AE < AF  . Касательные плоскости содержат касательные из A  к окружности, пусть это AB  и AC  . Легко видеть, что SAB  и SAC  и есть искомые плоскости, проведём в этих треугольниках высоты к AS  , которые в силу симметрии упадут в одну точку T  . Тогда наша задача сводится к поиску ∠BT C =2∠CT H = 2arctg CTHH  .

Итак, будем искать отрезки CH  и TH  . По теореме об отрезках касательной и секущей

                                                     √-      √ -
AC2 = AE ⋅AF = 8r2  =⇒  AC = 2√2r  =⇒  CH  = AC-⋅CO-= 2-2r⋅r = 2-2r
                                             AO       3r      3

Здесь мы просто посчитали площадь прямоугольного треугольника двумя способами. Теперь заметим, что AS ⊥BT C  , поскольку две прямые BT, TC  ей перпендикулярны, откуда TH ⊥ AS  , то есть △AT H ∼△AOS  , как прямоугольные с общим углом. Имеем

                √---------   ∘---8
TH- = TH-= AH-= √AC2-−-CH2-= -8√-−9-= -8√--
 r    OS   AS     AO2+ OS2     10    3 10

В итоге ∠BTC = 2arctg CH-= 2arctg √5
            TH        2  .

Ответ:

 2arctg √5
      2

Ошибка.
Попробуйте повторить позже

Задача 9#64569

В конус вписан цилиндр объема 9. Плоскость верхнего основания этого цилиндра отсекает от исходного конуса усеченный конус объемом 63. Найдите объем исходного конуса.

Источники: ОММО-2015, номер 10, (см.olympiads.mccme.ru)

Показать ответ и решение

PIC

Пусть высота и радиус исходного конуса равны H  и R  , а высота и радиус цилиндра равны h  и r  . Воспользуемся формулой для объема усеченного конуса:   (          )
13π R2+ Rr+ r2 h= 63  . Также мы знаем, что πr2h= 9  . Поделив соответствующие части равенств получаем

(  )  (  )
 R- 2+  R- + 1= 63⋅3= 21
 r      r        9

Решая квадратное уравнение, получаем корни 4  и − 5,  геометрический смысл имеет только положительный. R∕r= 4,H-−h= 4, h-= 3
       H      H  4  , откуда получаем для исходного конуса:

   1       1 (   )(R )2 H  1      4
V = 3πR2H = 3 πr2h r-  h-= 3 ⋅9 ⋅42⋅3 = 64
Ответ: 64

Ошибка.
Попробуйте повторить позже

Задача 10#107093

На основании прямого кругового конуса расположены три попарно касающихся друг друга шара одинакового радиуса. Каждый из них касается также боковой поверхности конуса. Четвёртый шар того же радиуса касается первых трёх и боковой поверхности конуса. Найдите объём конуса, если радиус окружности, образованной точками касания четвёртым шаром боковой поверхности конуса, равен √ -
  2 .

Источники: ПВГ 2014

Показать ответ и решение

Центры шаров образуют правильный тетраэдр. Угол α  между высотой и боковым ребром рассчитается и совпадает с углом между высотой и образующей конуса, а также с углом между радиусом упомянутой в условии окружности и радиусом 4-го шара, проведенными в одну точку.

Пусть α  — указанный угол. Тогда      √3       √6
sinα=  3 ,cosα = 3 .  Пусть r  — радиус окружности в плоскости касания конуса четвертым шаром. Образующая l  собирается из кусочков:

1)     -r-
x1 = sinα  (от вершины конуса до точки касания конуса четвертым шаром);

2) x2 =2R,  где R  — радиусы шаров (расстояние между двумя точками касания — нижнего и верхнего шаров соответственно);

3)        R
x3 = tg(π∕4−α∕2)-  ( расстояние от основания конуса до точки касания нижнего шара).

Заметим, что      r
R = cosα,  следовательно,     2r
x2 = cosα-  и       r
x3 = 1−sinα.

Итого

               √ -    √-  √-
l= x1+ x2+x3 = r-3(3+ 2 2+  3)
               2

Объем конуса

V = π (lsinα)2⋅(lcosα)
   3

После всех подстановок и упрощений получаем V = π(3+ 2√2+ √3)3.
   6

Ответ:

 π (3+ √3 +2√2)3
 6

Ошибка.
Попробуйте повторить позже

Задача 11#64565

Два равных конуса расположены так, что осью каждого из них является образующая другого. Углы при вершинах в осевых сечениях этих конусов равны по   ∘
90 . Найдите угол между двумя образующими, по которым пересекаются эти конусы.

Источники: ПВГ-2013 (см. pvg.mk.ru)

Показать ответ и решение

Пусть S  — общая вершина рассматриваемых конусов, SA
  1  и SA
  2  — их оси. Обозначим через SB  и SC  их общие образующие и через α  искомый угол BSC  . Описанная в задаче конфигурация имеет две плоскости симметрии: одна — SA1A2  — содержит оси конусов, другая — SBC  — содержит их образующие. Тогда эти плоскости перпендикулярны. Пусть SO  — прямая их пересечения.

PIC

Обозначим через ϕ  угол при вершине в осевом сечении каждого из конусов. Так как SA2  является образующей для конуса с осью SA1  и наоборот, то ∠A2SO = ∠OSA1 = ϕ4  . Кроме того,

∠A2SB = ∠A2SC =∠A1SC = ϕ, ∠OSB =∠OSC  = α-
                       2                2

Точки A1, A2, B, C, O  можно выбирать произвольно на прямых SA1, SA2, SB, SC, SO.  Будем считать, что точки A1, A2, B, C, O  лежат в некоторой плоскости, перпендикулярной прямой SO  и расположенной на расстояние h  от вершины S  . Тогда из пирамиды SOA1C  , в которой все плоские углы при вершине O  прямые, имеем

     ---h--         ( ϕ)      --h---        (α)
SA1 = cos(ϕ),OA1 =h tg 4 ,SC = cos(α2),OC = htg 2
         4

Тогда по теореме косинусов для треугольников OA1C  и SA1C

           (  )
A C2 =h2tg2 ϕ  + h2tg2(α-)
 1          4          2

         2        2           2       ( )
A1C2 =--h(-)-+ --h2(α)-−---(-2)h--(-)cos ϕ
      cos2 ϕ4    cos  2   cos ϕ4 cos α2     2

Приравняем эти выражения, сократим на h2  и применим основное тригонометрическое тождество в виде            1
tg2α+ 1= cos2α-:

     (  )      (  )
h2tg2 ϕ4 + h2tg2  α2-=

                                 (  )
= --h2(-)-+ --h2(-) −---(-2h)2--(-)cos  ϕ
  cos2 ϕ4    cos2 α2   cos ϕ4 cos α2     2

   ( )     (  )    (  )       (  )                   (  )
tg2 ϕ  + tg2 α- = tg2  ϕ + 1+ tg2 α- + 1− --(-)2--(-)cos ϕ
    4       2        4          2      cos ϕ4  cos α2     2

   ( )     (  )  (  )
cos ϕ  =cos ϕ  cos α-
    2       4      2

Мы знаем, что ϕ= 90∘ , поэтому cos(α)= ∘--2√--.
    2     2+  2

Ответ:

 2arccos∘-2√--
        2+  2

Рулетка
Вы можете получить скидку в рулетке!