Тема . Дополнительные построения в стерео

Развёртка

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела дополнительные построения в стерео
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#37329

Дан куб A...D
     1  с ребром a  . Точка O  — центр грани ABCD  . Найдите наименьшее значение суммы длин |OE |+|EA |
        1 , если точка    E  лежит на отрезке AB  .

Подсказки к задаче

Подсказка 1

Нам нужно найти наименьшее значение суммы длин двух отрезков. Но... Они лежат вообще в разных плоскостях- это неудобно. Совсем непонятно, что делать с ними в таком виде. Когда есть неудобство, пробуем от него избавиться! Как это можно сделать?

Подсказка 2

Верно, мы же можем расположить их в одной плоскости. Уже ситуация полегче. Вспомним о том, что нам надо найти - наименьшую сумму длин. Обычно это делается с помощью неравенства. А какое самое простое неравенство есть для двух отрезков?

Подсказка 3

Да, это неравенство треугольника! Ведь по нему сумма двух сторон должна быть больше третьей. Хм... Но тогда же получается, что если Е попадёт на третью сторону, то это и будет минимум. Осталось только подумать, зачем нам дали такую хорошую точку О.

Показать ответ и решение

PIC

Рассмотрим A′B ′ ∥AB,A′ ∈ AD,B′ ∈ BC  и AA′ = BB′ = A′B′ = AB  . Тогда EA1 =EA ′ для произвольной E ∈AB  (A′E  получается из AE  поворотом A1B1  на 90∘ относительно AB  ). Но отсюда нам надо найти минимум OE +EA ′ , который достигается только при E ∈ OA′ и будет равен OA′ , то есть

                                         ∘--------
                ′  ∘-------2-------′-′2    a2-  9a2- ∘ 5-
min(A1E +OE )= OA =  h(O,AD )+ h(O,AB ) =   4 + 4  =  2a
Ответ:

 a∘ 5
   2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!