Разрезания и геометрические конструкции в текстовых
Ошибка.
Попробуйте повторить позже
Единичный квадрат разбили на прямоугольники, в каждом из которых отметили одну сторону. Докажите, что сумма длин отмеченных сторон не меньше
Подсказка 1
Как можно связать сумму длин отмеченных сторон с суммой их площадей?
Подсказка 2
Если в каждом прямоугольнике мы сторону, отличную от отмеченной, увеличим до 1, то что можно сказать о сумме площадей новых прямоугольников?
Подсказка 3
Она равна сумме отмеченных сторон. Почему она не меньше 1?
Первое решение. Увеличим каждого прямоугольника сторону, перпендикулярную отмеченной, до При этом его площадь не уменьшится и станет (численно) равной длине выбранной стороны. Таким образом, сумма длин выбранных сторон равна сумме площадей удлинённых прямоугольников, которая, в свою очередь, не меньше площади единичного квадрата.
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение. Спроектируем все отмеченные отрезки на одну из сторон квадрата. Если она полностью покрыта проекциями, то их суммарная длина не меньше Если на стороне есть точка, не покрытая проекциями, то проведём через неё перпендикуляр к стороне. Этот перпендикуляр покрыт прямоугольниками, в которых отмечена сторона, параллельная ему (иначе основание перпендикуляра покрыто проекцией отмеченной стороны), значит, суммарная длина этих отрезков равна
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!