Использование монотонности функций в уравнениях без логарифмов и тригонометрии
Ошибка.
Попробуйте повторить позже
Решите уравнение:
Подсказка 1
Понятно, что мы можем просто разложить выражение на множители, потом привести подобные и потом снова долго и мучительно раскладывать на множители. Но давайте придумаем что-нибудь поинтереснее. Посмотрите на то, как сильно похожи скобки в произведении. Давайте подумаем, как этим воспользоваться и какую формулу сокращенного умножения мы сможем применить!
Подсказка 2
Представьте х² - 8x + 16 как х² - 8x + 17 - 1. Как тогда можно представить вторую скобку, чтобы она получилась максимально похожа на первую? А какой формулой сокращенного умножения можем воспользоваться?
Подсказка 3
Верно! Сделаем так, чтобы у нас получилась разность квадратов и разложим по этой формуле! Посмотрите, что получилось теперь?
Подсказка 4
Верно, снова разность квадратов! Воспользуйтесь ей и разложите выражение на скобки, а дальше дело за малым – найти решение квадратных уравнений!
Первое решение.
Положим , тогда получим
Тогда либо
решений нет, поскольку
либо
Второе решение.
Обозначим левую часть уравнения
за . Заметим, что при функция монотонно возрастает, поэтому решений уравнения на этом промежутке может быть не более одного. При этом , так что является решением. Легко видеть, что уравнение симметрично относительно , так что если решением является то решением является и при этом решений меньше больше нет, так как иначе было бы соответствующие им решения и на промежутке , а на нём решение только одно из монотонности, и мы уже его нашли.
2; 6
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!