Тема . Уравнения без логарифмов и тригонометрии

Использование монотонности функций в уравнениях без логарифмов и тригонометрии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71016

В уравнении

 2022   2021    2020
x   − 2x    − 3x  − ...− 2022x− 2023 =0

можно как угодно переставлять коэффициенты при всех степенях x  , кроме самой старшей. Можно ли такой перестановкой добиться, чтобы уравнение имело хотя бы два положительных корня?

Источники: Надежда энергетики-2023, 11.3 (см. www.energy-hope.ru)

Подсказки к задаче

Подсказка 1

Давайте подумаем, какой в этой задаче может быть ответ: если ответ да, то необходимо предъявить пример. Не очень хочется подбирать коэффициенты и искать корни. Давайте попробуем доказать, что, как бы мы не меняли коэффициенты местами, положительных корней будет не больше 1. На что вас наводит последнее предложение?

Подсказка 2

На монотонность! Вспомните, если функция строго монотонна, то она имеет не более 1 корня. Давайте попробуем найти здесь что-то похожее. Пускай (a₂, a₃, ..., a₂₀₂₃)- произвольная перестановка чисел (2, 3, ..., 2023). Тогда наш многочлен имеет вид: x²⁰²²-a₂x²⁰²¹-...-a₂₀₂₃=0. Нам мешаются минусы, может, перенести их в правую часть?

Подсказка 3

x²⁰²²=a₂x²⁰²¹+...+a₂₀₂₃. Теперь справа у нас монотонная функция, при x>0. Но слева у нас также монотонная функция, поэтому сразу завершить решение не получится. Что можно сделать, чтобы слева у нас стояла константа?

Подсказка 4

Можно поделить обе части на x²⁰²² (т.к. нас интересуют положительные корни, мы можем это сделать). Тогда: 1=a₂/x+a₃/x²+...+a₂₀₂₃/x²⁰²². Что мы можем сказать про функцию, стоящую справа?

Подсказка 5

Она строго убывает. Действительно, при увеличении x знаменатель каждой дроби увеличится, а значит, сами они уменьшатся. ⇒ Справа функция монотонно убывает, а слева константа, равная 1 ⇒ она пересекает ее не более чем в 1 точке. Победа!

Показать ответ и решение

Докажем, что это невозможно.

От исходного уравнения перейдем к уравнению, в котором коэффициенты многочлена образуют произвольную перестановку (a2,a3,...,a2023) из чисел {2,3,...,2023}:

2022    2021    2020
x   − a2x  − a3x    − ...− a2022x− a2023 = 0

Заметим, что x= 0  не является корнем уравнения, т.к. при его подстановке в уравнение получим:

− a2023 =0,

что неверно.

Перенесём все отрицательные члены направо, а затем поделим уравнение на x2022  (при условии x⁄= 0  ):

x2022 = a2x2021+a3x2020+ ...+ a2022x +a2023

1= a2+ a32 + ...+ a22020221 + a22002322
   x   x       x     x

В правой части уравнения получили строго монотонно убывающую на положительной полуоси функцию:

f(x)= 20∑22ak+1
      k=1 xk

Доказательство строгой монотонности: пусть x1 > 0,x2 > 0,x1 <x2.  Тогда для любого k ∈{1,2,...,2022} выполнено:

ak+k1< ak+k1⇒  f(x2)< f(x1)
 x2    x1

Строгое монотонное убывание f(x)  на положительной полуоси означает, что она пересекает горизонтальную прямую y = 1  в единственной точке, которая и будет единственным положительным корнем исходного уравнения.

Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!