Сложные логарифмические неравенства
Ошибка.
Попробуйте повторить позже
Решите неравенство:
Источники:
Подсказка 1
Сначала, конечно же, находим ОДЗ! Но, заметим, что основания двух логарифмов разные, и при этом каждый из них содержит x. Что можно сделать, чтобы было удобнее работать с x?
Подсказка 2
Да, по свойству логарифмов мы можем перевернуть каждый из них и x перейдет в аргумент! Что будем делать дальше, чтобы получить какое-то хорошее неравенство, где например, можно было бы сделать замену?
Подсказка 3
Конечно, давайте распишем каждый из логарифмов таким образом: logₐ(xy) = logₐx + logₐy. Дальше давайте просто сделаем замену вида: t = logₐx, решим неравенство и пересечём ответ с ОДЗ!
Найдём ОДЗ: . Далее перевернём логарифмы и используем свойства логарифмов:
Заменим на и получим дробно-рациональное неравенство:
Теперь сделаем обратную замену и получим:
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!