Сложные логарифмические неравенства
Ошибка.
Попробуйте повторить позже
Решите неравенство
Подсказка 1
Логарифмы в обеих частях, с разными основаниями, x содержится и в аргументе, и в основании обоих логарифмов... Давайте "причешем" наше выражение. Для начала разберёмся с основаниями - попробуем вынести оттуда x и привести логарифмы к одному основанию
Подсказка 2
Перейдём, например, к основанию 3 (используя формулу о делении логарифмов с одним основанием), так как оба основания кратны трём. Кажется, всё ещё ничего не видно. Тогда продолжим причёсывать - теперь, когда у всех логарифмов общие основания, попробуем оставить всем логарифмам одинаковый аргумент.
Подсказка 3
Да, можем вынести степени и коэффициенты из аргумента логарифма, оставив везде только х, после чего заменить log₃ x на t - и получим неравенство без логарифмов, которые мы решать уже умеем!
Переходя в обоих логарифмах к основанию 3, имеем:
Обозначаем и получаем:
Возвращаясь к переменной , окончательно получаем:
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!