Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела логарифмы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#88064

Докажите неравенство

   (    -1-)     (    -1-)      -1-- -1--
log2  1+ 2023  +log2  2− 2024  >1 + 2023 − 2024

Источники: Межвед - 2024, 11.3 (см. v-olymp.ru)

Подсказки к задаче

Подсказка 1

Какое неравенство хочется доказать для аргумента логарифма, благодаря которому задача будет решена?

Подсказка 2

Попробуем доказать такое неравенство: log₂(x+1) > x, для любого x от 0 до 1. Как его можно доказать? Как вообще доказываются многие неравенства?

Подсказка 3

Мы знаем, что можно понять о возрастании/убывании функции через производную. А именно можно посмотреть на вторую производную какой-то хорошей функции, какой же?

Подсказка 4

Например, на вторую производную функции n+1-2ⁿ. Чему она равна и какой вывод мы из этого можем сделать?

Подсказка 5

Вторая производная равна -ln²2*2ⁿ, которая очевидно меньше 0 на всём промежутке (0;1)

Показать доказательство

Докажем, что для всех x∈ (0,1)  верно неравенство

log2(x+1)> x

______________________________________________________________________________________________________________________________________________________

Для этого достаточно показать, что x+ 1> 2x.  Действительно, пусть f(x)=x +1− 2x  , тогда f′′(x)=− ln22 ⋅2x <0  , следовательно, f(x)  выпукла вверх на отрезке [0,1].  Кроме этого f(0)= 0  и f(1)= 1  , а значит, f(x)> x  для всех x ∈(0;1)  , а значит, f(x)>0  для всех x∈ (0;1)  , откуда получаем требуемое.

_________________________________________________________________________________________________________________________________________________________________________________

Так как    -1-
0< 2023 <1  и       -1-
0 <1− 2024 < 1,  то применяем доказанное неравенство:

   (     1 )     (        1  )    1       1
log2  1+ 2023- +log2  1+(1− 2024-) > 2023-+1− 2024

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!