Сложные логарифмические неравенства
Ошибка.
Попробуйте повторить позже
Решите неравенство
Сначала запишем ОДЗ:
Так как то получаем система, указанная выше, эквивалентна следующей:
Из третьего неравенства получаем, что Тогда, пересекая все неравенства, получаем
Теперь преобразуем исходное неравенство:
С учетом ОДЗ и свойств логарифма получаем:
Пусть Тогда уравнение принимает вид:
Приводим к общему знаменателю:
Решив данное неравенство, получаем или Из получаем откуда Теперь сделаем обратную замену для :
По методу рационализации:
Решаем неравенство и получаем, что Пересекая с ОДЗ, получаем
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!