Остатки и делимость по модулю 7
Ошибка.
Попробуйте повторить позже
Можно ли натуральные числа от до расположить в ряд так, чтобы сумма любых четырех из них, стоящих через одно (например, первого, третьего, пятого и седьмого или второго, четвертого, шестого и восьмого), делилась на
Подсказка 1
Предположим, что можно сделать как по условию. То есть, к примеру, сумма первого, третьего, пятого, седьмого делится на 7, при этом сумма третьего, пятого, седьмого и девятого тоже делится на 7. Какой вывод из этого можно сделать про первое и девятое числа?
Подсказка 2
Да, что числа с номерами 1 и 9 имеют одинаковый остаток по модулю 7. Но ведь нам ничего не мешает сдвинуть всю нашу выборку на 1, или 2, или еще на сколько-то? Попробуйте обобщить этот вывод.
Подсказка 3
Общий вывод таков: числа, номера которых сравнимы по модулю 8, сравнимы по модулю 7. На какие группы тогда разбиваются числа из нашего набора?
Подсказка 4
На 8 групп в каждой из которых все числа имеют одинаковый остаток по модулю 7. Но ведь тогда по принципу Дирихле какой-то из остатков по модулю 7 повторяется(есть две группы, объединив которые, получится одна. Все числа в ней будут иметь одинаковые остатки по модулю 7). Как тогда можно оценить снизу наибольшее из этих чисел? Найдите противоречие!
Заметим, что числа, номера которых дают одинаковый остаток по модулю дают одинаковый остаток по модулю Поскольку то мы имеем групп с, как минимум, числами и одинаковым остатком по модулю в каждой. Отсюда найдутся две группы с одинаковым остатком (), то есть чисел с таким остатком по модулю будет не менее — чисел с любым остатком по модулю не больше, чем столько, противоречие.
- нет
- Нет
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!