Тема . Системы уравнений и неравенств

Симметрия или цикличность в системе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела системы уравнений и неравенств
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68022

Найти все решения системы уравнений в действительных числах:

(|  x5 =y3+ 2z
|||{
|  y5 =z3+ 2x
|||(  z5 =x3+ 2y

Источники: Всесиб-2023, 11.3 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

Давайте внимательно посмотрим на нашу систему, что можно сказать о ней? Верно, уравнения в ней циклические! Поэтому можно упорядочить наши переменные, не умаляя общности: x ≥ y ≥ z.

Подсказка 2

Вычтем из первого уравнения третье: x⁵-z⁵ = y³+2z-x³-2y. Заметим, что левая часть уравнения всегда неотрицательна, а правая не больше нуля! Какой вывод можно сделать из этого?

Показать ответ и решение

Первое решение.

Если тройка (x,y,z)  является решением, то решениями являются (y,z,x),(z,x,y)  . В силу этой цикличности системы мы можем не умаляя общности считать x  наибольшим.

Вычтем из первого уравнения второе и третье:

 5  5    3  3
x − z = (y − x )+ 2(z− y)

 5  5    3  3
x − y = (y − z )+ 2(z− x)

Если z ≤ y,  то 0≤x5 − z5 = (y3 − x3)+ 2(z− y)≤0+ 2⋅0= 0,  поэтому должно достигаться равенство 0= x− z = y− x = z− y =0.

Если y ≤ z,  то 0≤x5 − y5 = (y3 − z3)+2(z− x)≤0+ 2⋅0= 0,  поэтому должно достигаться равенство 0= x− y = y− z =z − x =0.

Таким образом, система может иметь решение только при x= y = z.  При подстановке в любое из уравнений системы получаем

 5   3
x  − x − 2x= 0

x =0 или x2 = 2

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

Заметим, что в любой тройке, являющейся решением, все переменные одного знака: они либо все неотрицательны, либо все неположительны. Это следует из того, что нечётная степень числа имеет тот же знак, что и само число. Действительно, среди переменных две имеют одинаковый знак, тогда правая часть уравнения, содержащего эти переменные, имеет тот же знак, значит и левая часть, а с ней и третья переменная имеют тот же знак. Кроме того, если одна из переменных равна 0,  то левая часть соответствующего уравнения равна 0,  значит сумма двух чисел одного знака в правой части тоже равна 0,  поэтому каждое из этих чисел равно 0.

Внесём эту тройку в ответ. Тогда дальше можно считать, что все переменные не равны 0.  При умножении решения системы на − 1  снова получаем решение, следовательно, дальше можно считать, что x,y,z >0,  а потом внести в ответ тройку с противоположными знаками.

Сложим все три уравнения и перенесем правую часть в левую:

(x5− x3− 2x)+ (y5− y3− 2y)+ (z5 − z3− 2z)= 0.

Теперь рассмотрим функцию       5   3        4   2       2     2
f(x) =x − x − 2x =x(x − x − 2)= x(x +1)(x − 2).  Нетрудно понять, что при       √ -
0 <x <  2  значении функции отрицательно, а при    √ -
x >  2  положительно, а также при      √-
x∈{0; 2} оно равно 0.  Отсюда следует, что все переменные не могут быть одновременно больше или одновременно меньше √ -
  2.  Так как иначе f(x)+f(y)+f(z)⁄=0,  ведь в левой части стоит сумма трёх чисел одного знака, поэтому они все должны равняться 0,  откуда следует, что при этом          √ -
x =y =z =  2.

Итак, остались два случая,    √ -
x >  2≥ y,z  и      √-
x,y ≥ 2> z.

Если    √-
x>  2≥ y,z,  тогда x5− y3− 2z ≥ x5− x3− 2x >0  — это не решение.

Если     √ -
x,y ≥  2> z,z5− x3− 2y <z5− z3− 2z < 0  — это тоже не решение.

Таким образом доказано, что других решений, кроме уже найденных, нет.

Ответ:

 (−√2,−√2,−√2-),(0,0,0),(√2,√2,√2)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!