Симметрия или цикличность в системе
Ошибка.
Попробуйте повторить позже
Найдите все тройки положительных чисел удовлетворяющие системе уравнений
Источники:
Подсказка 1
Уравнения в системе довольно схожие, правая часть второго делится на правую часть первого. А можно ли что-то такое отметить и для левых частей?
Подсказка 2
Попробуйте разделить второе уравнение на первое!
Подсказка 3
(x⁴ + x²y²+ y⁴) = (x² + xy + y²)(x²- xy + y²)
Подсказка 4
Теперь мы умеем представлять x²y²z² в виде произведения трёх скобок. Давайте подумаем, а на что похожи выражения в скобках? Как можно оценить каждую из них?
Подсказка 5
Вспомните, что a² + b² ≥ 2ab!
Поделим второе уравнение на первое (так как обе части первого уравнения положительны). Отношение первых скобок равно
Аналогичное равенство имеет место для второй и третьей скобок, тогда после деления получим:
С учетом того, что и того, что все числа положительные (тогда мы можем перемножать неравенства), получим:
А значит, наше равенство выполняется только в случае то есть в случае равенства всех переменных. Тогда подставляя в первое уравнение, получим
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!