Сведение системы к квадратному
Ошибка.
Попробуйте повторить позже
Решите в действительных числах систему уравнений:
Источники:
Подсказка 1
Перед нами система с 4 неизвестными, в которой, если начать выражать всё последовательно, ничего хорошего не выйдет. Давайте немного повспоминаем, где такая конструкция встречается? Возможно, вы этим занимались в алгебре.
Подсказка 2
Ага, если вспомнили, то отлично. Если нет, то ничего страшного. Попробуйте перемножить два приведённых трёхчлена с коэффициентами a, b, c и d и привести подобные слагаемые. Не видите сходств? Какой вывод отсюда можно сделать?
Подсказка 3
Да, нам по сути сказали коэффициенты многочлена 4 степени! Видеть такое вы могли в методе неопределённых коэффициентов как раз для уравнения 4 степени. Теперь вы можете попробовать найти очевидные корни этого многочлена и разложить его на скобки. Теперь осталось понять главное. Для чего вы всё это делали?
Подсказка 4
Точно, для того, чтобы понять, что корни будут единственными. Вы могли и просто так угадать a, b, c и d, но о единственности ничего утверждать не могли. Осталось только сопоставить наши изначальные квадратные трёхчлены с тем, что получилось в итоге, и победа!
Пусть и — два квадратичных многочлена, коэффициенты которых — искомые корни данной системы. Тогда
Из делителей свободного коэффициента находим корни и , тогда можно поделить многочлен на
что возможно только в двух случаях:
тогда в первом случае получаем а во втором —
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!