Тема Системы уравнений и неравенств

Сведение системы к квадратному

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела системы уравнений и неравенств
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#82780

Решите систему уравнений

{ (xy+ 3x− y − 3)|y− x− 9|=(x− 4)|xy+3x − y− 3|;
  √y-−-x+9-=y − 4.

Источники: Ломоносов - 2024, 11.3 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Надо понять, какие есть возможности выполнения 1-го уравнения. Имеется одинаковая скобка справа и слева, на неё можно сократить (не забывая про модуль), когда она не равна нулю. Следовательно, можно отдельно рассмотреть случаи равенства и неравенства нулю этой скобки, также не забывая про ОДЗ.

Подсказка 2

Когда ни одна из скобок первого уравнения не равна нулю, учесть модули можно довольно просто — их наличие равносильно тому, что произведение всех скобок без модулей положительно (поскольку, если оставить все модули в одной стороне, а скобки без модулей перенести в другую, то дробь без модулей обязана быть положительной). Далее уже сложностей не остается — нужно лишь аккуратно поделить всё на случаи и довести их до конца, учитывая ОДЗ.

Показать ответ и решение

Из второго уравнения следует, что y ≥ 4  , так как корень неотрицателен.

Пусть первое уравнение выполняется из-за того, что (xy+ 3x − y− 3)= 0  . Условие равносильно (x− 1)(y +3)= 0  . Решение y = −3  не подходит, а при x= 1  получаем:

                  ({
∘y+-8= y− 4  ⇐⇒    y ≥ 4,          ⇐⇒   y = 8
                  (y2− 9y+8 =0.

Пусть теперь (xy +3x− y− 3)⁄=0  , но (x− 4)= 0  , и (y − x − 9)= 0  . Тогда x= 4,y = 13  , но такой вариант не подходит под второе уравнение.

При остальных x,y  система равносильна системе:

(                            (
|||{ (x − 1)(y +3)(x − 4)> 0,      |||{(x− 1)(y+ 3)(x− 4)>0,
  y− x− 9= ±(x − 4),     ⇐⇒    y =13 или y = 2x+ 5,
|||( √y−-x+-9= y− 4             |||(√y-−-x+-9= y− 4

При y = 13  решением будет x= −59  , при y = 2x+ 5  получим уравнение:

√-----             ({ x≥ 0.5,
 x+ 14= 2x +1  ⇐ ⇒  (  2
                     4x +3x− 13= 0

Откуда    −3+√217-
x=    8  , тогда    17+√217-
y =   4  . Последняя пара не удовлетворяет условию (x − 1)(y +3)(x − 4)> 0  .

Ответ:

 (1,8),(−59,13)

Ошибка.
Попробуйте повторить позже

Задача 2#68031

Действительные числа x  и y  таковы, что

   5      3
x +y = y+ x = 23

Какое наибольшее значение может принимать произведение xy?

Источники: Турнир Ломоносова-2023, 11.1 (см. turlom.olimpiada.ru)

Подсказки к задаче

Подсказка 1

Давайте запишем наше условие как системку, что два левых выражения равны 23. Понятно, что x, y не нули. Поэтому что можно сделать в системе, чтобы получить где-то xy?

Подсказка 2

Домножить одно из уравнений на x, а другое на y! И выйдет что-то вида xy+3 = 23x, xy+5 = 23y. А что стоит сделать теперь, чтобы вообще все было только через xy?

Подсказка 3

Перемножить два этих уравнения) Дальше делаем замену и решаем задачу окончательно!

Показать ответ и решение

При условии того, что обе переменные не равны нулю, имеем:

{ xy+ 5= 23y
  xy+ 3= 23x.

Значит:

(xy+ 5)(xy+ 3) =232xy

Пусть t=xy :

t2+ 8t+15 =529t

t2− 521t+15= 0

Тогда получим:

       √ ------
t= 521±--271-381.
        2

Докажем, что наибольший корень реализуется. Действительно, из обоих уравнений получаем x,y,  подставляя xy.  Они подходят, так как наши преобразования были равносильны с учетом того, что x⁄= 0,y ⁄=0.

Ответ:

 521+√271381
     2

Ошибка.
Попробуйте повторить позже

Задача 3#31703

Решите систему уравнений:

{ x2− 3xy +2y2+ 5x − 9y+ 4= 0;
  x2− y2 − 5= 0.
Подсказки к задаче

Подсказка 1

Заметим, что у нас первое уравнение можно решить как квадратное относительно х! Что мы тогда получим?

Подсказка 2

Верно, мы получим 2 случая того, как у выражается через х. А это уже можно довольно успешно подставить во второе выражение системы!

Показать ответ и решение

Решим первое уравнение как квадратное относительно x  :

         2     2          2
D =(5− 3y) − 4(2y − 9y+4)= y + 6y +9

2x= 3y− 5 ±(y+ 3)

Подставим во второе уравнение x= 2y− 1  :

3y2− 4y− 4= 0

3y = 2±√4-+3-⋅4

y = 2±-4
     3

x= 1±-8
     3

Подставим во второе уравнение x= y− 4  :

−8y+ 11 =0

y = 11
    8

   11−-32
x=    8

Значит, у системы есть три решения: y = 2  и x= 3  ,     2
y = −3  и      7
x= − 3  ,    11
y = 8  и     21
x= −8  .

Ответ:

 (3;2),(− 7;− 2),(− 21;11)
       3  3    8 8

Ошибка.
Попробуйте повторить позже

Задача 4#51846

Решить систему уравнений

{ (x− 2)(x +3)= y(y − 5);
  log (2 − y)=-x.
    x       y2
Показать ответ и решение

Первое уравнение можно записать так:

 2   2
x − y +x +5y− 6= 0 или (x+ y− 2)(x− y+ 3) =0, откуда
x= y− 3
(1)

или

x= 2− y
(2)

Из второго уравнения системы следует, что

2− y >0,x> 0,x⁄= 1
(3)

a) Если справедливо равенство (2), то из второго уравнения системы находим x =y2,  откуда, используя равенство (2), получаем 2− y = y2  или (y− 1)(y+ 2)=0.  Пусть y =1,  тогда x= 1,  и не выполняются условия (3). Пусть y = −2,  тогда x= 4  и (4;−2)− peшение данной системы.

б) Если справедливо равенство (1) и условия (3), то y > 3  и y < 2,  что невозможно.

Ответ:

 (4;− 2)

Ошибка.
Попробуйте повторить позже

Задача 5#70774

Решите систему уравнений

({ 3y− 2x= √3xy−-2x− 3y+-2

( 3x2+ 3y2 − 6x− 4y = 4

Источники: Физтех-2022, 11.2 (см. olymp.mipt.ru)

Подсказки к задаче

Подсказка 1

Для начала запишем ОДЗ для первого уравнения, а после этого можем возвести в квадрат. Давайте теперь попробуем перебрать известные нам способы решения. Вот некоторые из них: сложение и вычитание уравнений, решение однородного уравнения, замены различные, решение квадратного уравнения относительно x или y. Какие из них целесообразно здесь применить? Попробуйте сделать это!

Подсказка 2

Попробовали? Скорее всего, заменой ничего не вышло, потому что общих частей особо нет, да и к однородному вряд ли получилось свести. А что если решить первое уравнение, как квадратное относительно одной из переменных? Кажется, что страшное выражение и ничего не выйдет, но не попробуете — не узнаете!

Подсказка 3

Верно, например, после решения квадратного уравнения относительно y в дискриминанте получается полный квадрат, а значит, мы можем выразить y через x. Осталось только подставить каждое из выражений во второе уравнение, найти x и y, и победа! Но не забудьте учесть ОДЗ!

Показать ответ и решение

Первое уравнение при условии 3y− 2x ≥0  равносильно уравнению

       2
(3y− 2x) = 3xy− 2x − 3y+ 2

  2             2
4x +(2− 15y)x+ (9y + 3y− 2)= 0

Решая это уравнение как квадратное относительно переменной x,  имеем

                                    ⌊ x= 3y − 1
D =(2− 15y)2− 16(9y2+3y− 2)= (9y− 6)2 ⇒ ⌈    3   1
                                      x= 4y+ 2

Подставляем во второе уравнение исходной системы.

Если x= 3y− 1,  то

              ⌊        √--
              | y = 4+6-10
6y2− 8y +1= 0⇔ |⌈     4− √10
                y = --6---

Получаем две пары      √--     √--
y = 4+610,x = 2+210  и      √--      √--
y = 4−610,x= 2−210.

Если x= 34y+ 12,  то

              ⌊
  2             y =2
3y − 4y− 4= 0⇔ ⌈ y =− 2
                     3

Также имеем две пары y =2,x= 2  и y = − 2,x= 0.
    3

Из четырёх найденных пар чисел неравенству 3y ≥2x  удовлетворяют только две из них: (2;2),(2−√10;4−-√10) .
       2     6

Ответ:

 (2;2),(2−-√10;4−√10)
        2    6

Ошибка.
Попробуйте повторить позже

Задача 6#71525

Решите в действительных числах систему уравнений:

(| a+ c= 4
|||{ ac+ b+d =6
|
|||( ad+ bc =5
  bd= 2

Источники: ОММО-2022, номер 5 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Перед нами система с 4 неизвестными, в которой, если начать выражать всё последовательно, ничего хорошего не выйдет. Давайте немного повспоминаем, где такая конструкция встречается? Возможно, вы этим занимались в алгебре.

Подсказка 2

Ага, если вспомнили, то отлично. Если нет, то ничего страшного. Попробуйте перемножить два приведённых трёхчлена с коэффициентами a, b, c и d и привести подобные слагаемые. Не видите сходств? Какой вывод отсюда можно сделать?

Подсказка 3

Да, нам по сути сказали коэффициенты многочлена 4 степени! Видеть такое вы могли в методе неопределённых коэффициентов как раз для уравнения 4 степени. Теперь вы можете попробовать найти очевидные корни этого многочлена и разложить его на скобки. Теперь осталось понять главное. Для чего вы всё это делали?

Подсказка 4

Точно, для того, чтобы понять, что корни будут единственными. Вы могли и просто так угадать a, b, c и d, но о единственности ничего утверждать не могли. Осталось только сопоставить наши изначальные квадратные трёхчлены с тем, что получилось в итоге, и победа!

Показать ответ и решение

Пусть x2+ ax+ b  и x2 +cx+ d  — два квадратичных многочлена, коэффициенты которых — искомые корни данной системы. Тогда

( 2      )( 2      )   4       3           2
 x + ax+ b x + cx +d = x + (a +c)x  +(ac+b+ d)x  +(ad+bc)x +bd=

   4   3    2
= x +4x + 6x +5x+ 2

Из делителей свободного коэффициента 2  находим корни − 1  и − 2  , тогда можно поделить многочлен на (x+ 1)(x+ 2)=(x2+ 3x +2):

x4+ 4x3 +6x2+ 5x+2 =(x2+ 3x+ 2)(x2+ x+ 1),

что возможно только в двух случаях:

{                        {
  x2+ax +b= x2+ 3x+2        x2 +ax+ b= x2+ x+1
  x2+cx+ d= x2+ x+ 1  или   x2 +cx+ d= x2+3x +2

тогда в первом случае получаем a= 3,b= 2,c= 1,d =1,  а во втором — a= 1,b=1,  c= 3,d= 2.

Ответ:

 (3,2,1,1),(1,1,3,2)

Ошибка.
Попробуйте повторить позже

Задача 7#95399

Решите систему уравнений

{  x4+ 7x2y+ 2y3 = 0
   4x2+ 27xy+ 2y3 =0

Источники: Межвед - 2021, 11.5 (см. v-olymp.ru)

Показать ответ и решение

Рассмотрим функцию f(t)= t2+ 7ty+ 2y3
         2  . При условии выполнения равенств исходной системы её корнями будут t = x2
 1  и t =2x
2  . Если t1 = t2  , то x1 =0,x2 = 2  . Отсюда найдём y1 = 0,y2 = −1  . Если t1 ⁄= t2  , то по теореме Виета

        3         3   3
t1⋅t2 =2y   ⇐⇒   2x = 2y   ⇐ ⇒  x =y.

Подставляя в исходную систему, найдём третье решение (− 11;− 11).
  2   2

Ответ:

 (0,0),(2,− 1),(− 11,− 11)
            2   2

Рулетка
Вы можете получить скидку в рулетке!