Тема . Классические неравенства

Неравенства Мюрхеда и Шура

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела классические неравенства
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#118220

Для положительных a,  b,  c  докажите неравенство

-a--  -b--  -c--  3
b+ c + c+ a + a+ b ≥ 2
Показать доказательство

Умножим неравенство на все встречающиеся знаменатели и раскроем все скобки. Получившееся представляем в виде выражений Ti,j,k(a,b,c)  из неравенства Мюрхеда

T3,0,0(a,b,c)+2T2,1,0(a,b,c)+ T1,1,1(a,b,c)≥ T1,1,1(a,b,c)+ 3T2,1,0(a,b,c)

T3,0,0(a,b,c)≥ T2,1,0(a,b,c)

Последнее неравенство верно по неравенству Мюрхеда.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!