Подобные треугольники и теорема Фалеса
Ошибка.
Попробуйте повторить позже
Точка — центр описанной окружности остроугольного треугольника
а
— точка пересечения его высот. Оказалось, что
прямая
параллельна стороне
На плоскости отметили такую точку
что
— параллелограмм. Отрезки
и
пересеклись в точке
В каком отношении перпендикуляр, опущенный из точки
на отрезок
делит
Источники:
Пусть — основание высоты из точки
а
— основание перпендикуляра, опущенного из точки
на
Прямая
—
серединный перпендикуляр к отрезку
поэтому она параллельна высоте
По свойству ортоцентра и
По условию прямые
и
параллельны, следовательно,
—
прямоугольник и
Первое решение.
В параллелограмме противоположные стороны равны, поэтому
Треугольники
и
подобны по
двум углам (
как вертикальные,
и их коэффициент подобия равен 2. Пусть
тогда
и
поскольку
— середина стороны
Стало быть,
и
так как
треугольники
и
подобны. Пусть
тогда
и
Следовательно,
и
Таким образом,
______________________________________________________________________________________________________________________________________________________
Второе решение.
По условию прямые и
параллельны, а прямая
перпендикулярна прямой
поэтому
По
условию
параллелограмм, значит,
Отрезок
— средняя линия треугольника
поэтому
Кроме того,
и
перпендикулярны
поэтому точки
и
лежат на
одной прямой. Таким образом,
и
параллельна
Стало быть,
— параллелограмм.
Пусть
— точка пересечения его диагоналей, тогда
Следовательно,
и
— медианы треугольника
, а
— точка их пересечения, поэтому
и, значит,
Из подобия треугольников
и
следует, что
Тогда если
то
и
а, значит,
и
______________________________________________________________________________________________________________________________________________________
Третье решение.
Пусть точка — пересечение этой высоты с описанной окружностью треугольника
точка
диаметрально противоположна
точке
на этой окружности, а точка
— вторая точка пересечения прямой
с этой окружностью. Из параллельности прямых
и
следует, что прямая
перпендикулярна высоте
Поскольку
— диаметр окружности,
и,
значит, прямые
и
параллельны. Стало быть,
— средняя линия треугольника
поэтому
Далее,
поэтому в треугольнике отрезок
является биссектрисой и высотой, а, значит, и медианой. Таким образом,
Из
равенств
и
получаем, что
По условию прямые и
параллельны, а прямая
перпендикулярна прямой
поэтому
и точки
и
диаметрально противоположны. Следовательно,
и поэтому прямые
и
параллельны. Таким образом,
четырехугольник
является параллелограммом. Стало быть,
и отрезок
является медианой в треугольнике
Но отрезок
также является медианой в этом треугольнике. Следовательно,
— точка пересечения медиан этого треугольника
и
Тогда по теореме Фалеса
Но мы уже знаем, что
поэтому
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!