Теоремы Менелая и Чевы, Ван-Обеля и Жергонна
Ошибка.
Попробуйте повторить позже
Три прямые, параллельные сторонам треугольника и проходящие через одну точку, отсекают от треугольника
трапеции. Три
диагонали этих трапеций, не имеющие общих концов, делят треугольник на семь частей, из которых четыре — треугольники.
Докажите, что сумма площадей трёх из этих треугольников, прилегающих к сторонам треугольника
равна площади
четвёртого.
Рассмотрим картинку, соответствующую условию задачи с точностью до переобозначений:
Заметим, что треугольники с их внутренними точками образуют такое покрытие внутренности исходного
треугольника, что каждая его точка принадлежит не более, чем двум из трёх кусков покрытия. Тогда по лемме о линолеуме площадь
непокрытой части –
– равна сумме площадей покрытых дважды областей –
– тогда и только тогда, когда
общая площадь покрытия –
– равна площади всего треугольника
которую мы обозначим неизвестной
Первое решение.
Рассмотрим треугольник двигая точку
вдоль “оранжевой” прямой площадь треугольника остаётся постоянной по теореме о
перетягивании площади по рельсам Евклида (пользуемся тем, что оранжевая” прямая параллельна основанию треугольника). Тогда
передвинем точку
в точку
Аналогично поступим с точками
и
В итоге
Итак, сумма площадей “синих” треугольников, образованных на пересечениях треугольников и
равна площади не
замощённого участка треугольника
(зелёного треугольника) по теореме о паркете.
Второе решение.
По теореме об отношении площадей треугольников с общей высотой Ясно, что
эта сумма равна
тогда и только тогда, когда
Здесь уже настало время пользоваться природой появления точек от точки
Обозначим точки пересечения чевиан,
пересекающихся в точке
со сторонами треугольника за
Тогда по теореме Фалеса искомое соотношение эквивалентно
Это соотношение для конкурентных чевиан известно как теорема Жергонна. Доказать её можно так: площади треугольников и
относятся как высоты из вершин
и
соответственно, потому что сторона
общая, а высоты из этих вершин
относятся так же, как и
к
по обобщённой теореме Фалеса. Проделав аналогичные рассуждения с точностью до
переобозначений,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!