Теоремы Менелая и Чевы, Ван-Обеля и Жергонна
Ошибка.
Попробуйте повторить позже
На продолжении наибольшей боковой стороны за точку прямоугольной трапеции отметили точку так, что Докажите, что прямая делит основание пополам.
Подсказка 1
Пусть AB и DC пересекаются в X, и BE пересекается с AD в точке Y. Нас фактически просят найти AY : YD. В какой теореме может фигурировать такое отношение?
Подсказка 2
Конечно, такое отношение появится в теореме Менелая, записанного для треугольника ADX и прямой BE. Тогда нужно доказать, что произведение двух других отношений равно 1. С помощью каких других имеющихся объектов можно подойти к этой задаче?
Подсказка 3
Сначала используем то, что сразу напрашивается: AD - биссектриса, а потому AC/AE = CD/DE. А можно ли найти еще одну биссектрису?
Подсказка 4
Конечно! BAD - прямой угол, поэтому AB - внешняя биссектриса треугольника ACE. Тогда дополнительно получаем AC/AE = CX/CE. Теперь у нас есть разные свойства о точке C, а в теореме Менелая есть отношение XB/AB, при этом ни в каком из уже имеющихся результатов нет таких отрезков. Тогда зададимся целью это отношение заменить на другое. Как можно это сделать?
Подсказка 5
Точно! Из теоремы Фалеса получаем, что XB/AB = XC/CD. Что получится, если теперь подставить это в теорему Менелая и применить свойства биссектрис?
Пусть у нашей трапеции большое основание и маленькое Заметим, что у нас биссектриса в треугольнике Значит
Но так как угол прямой, то внешняя биссектриса этого треугольника. Поэтому
Пусть и пересекаются в точке а пересекает в точке Запишем теперь теорему Менелая для и секущей Получаем
Но по теореме Фалеса мы знаем, что
Теперь равенство выглядит следующим образом
Заметим, что теперь из свойств биссектрисы всё сокращается, кроме отношения которое равно Задача решена.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!