Тема . Треугольники и их элементы

Прямая Симсона

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники и их элементы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#70332

Основание высоты треугольника спроецировали на две другие высоты, а также две другие стороны треугольника. Докажите, что полученные четыре точки лежат на одной прямой.

Показать доказательство

Обозначим основания высот как C , A ,K,
 1  1  а основания высот из K  через P, Q, R, S.

PIC

Первое решение.

Точки P,Q,R  лежат на прямой Симсона треугольника AC1H  для точки K  на его описанной окружности (вписанность AC1HK  очевидна из суммы его противоположных углов).

Аналогично, точки Q,R,S  лежат на прямой Симсона треугольника A1HC  для точки K.

Точки P  и S  лежат на прямой QR,  так что четыре точки лежат на одной прямой.

Второе решение.

      ∠APK = ∠AQK  ⇒ APQK — вписанны й ⇒ ∠AQP = ∠AKP ;
                 PK ||CC ⇒  ∠AKP = ∠ACC ;
                    ∘  1              1
   ∠HQK + ∠HRK  =180 ⇒ QHRK  —вписанный ⇒ ∠HQR  = ∠HKR;
         В △KHC  ∠HKC  = 90∘ = ∠HKR +90∘− ∠ACR ⇒
⇒  ∠ACR = ∠HKR ⇒ ∠P QA =∠HQR  ⇒ P, Q, R лежат на одной прямой.

Аналогично, с точностью до обозначений, доказывается для точек

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!