Тема . Применение классических комбинаторных методов к разным задачам

Упорядочивание

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела применение классических комбинаторных методов к разным задачам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#34690

Из целых чисел от 0 до 1000 выбрали 101 число. Докажите, что среди модулей их попарных разностей есть десять различных чисел, не превосходящих 100.

Показать ответ и решение

Пусть a < a < ...< a
 0   1       100  — выбранные числа. Рассмотрим 10 разностей: a   − a ,a  − a ,...,a − a
 100  90 90   80     10   0  . Их сумма равна a100− a0 ≤ 1000  , следовательно, хотя бы одна их 10 разностей не превосходит 100. Пусть это разность ak+10− ak  . Тогда 10 чисел ak+1− ak < ak+2− ak < ...ak+10− ak ≤100  .

Ответ:

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!