Тема . Комбинаторная геометрия

Расположение точек, отрезков и прямых

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела комбинаторная геометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#73602

Окружность разбита 2n  точками на равные дуги. Докажите, что у любой замкнутой 2n  -звенной ломаной с вершинами во всех этих точках есть хотя бы два параллельных звена.

Показать доказательство

Занумеруем точки по порядку остатками 0,1,2,...,2n− 1  при делении на 2n  и рассмотрим ломаную с вершинами в этих точках. На каждом ее звене запишем сумму чисел, стоящих в концах звена. Легко проверить очень простой критерий параллельности звеньев: числа, записанные на них, дают равные остатки при делении на 2n.  Предположив, что параллельных звеньев нет, получим, что на звеньях написаны разные остатки при делении на 2n,  т.е. сумма всех таких остатков равна S = 0+ 1+2 +...  ...+ (2n − 1).  С другой стороны, сумма чисел на всех звеньях - это удвоенная сумма чисел, написанных на всех вершинах (каждая вершина «отдает» свой номер двум звеньям). Получаем, что 2S  и S  должны давать один остаток при делении на 2n.  Но тогда S = (2n − 1)n  должно делиться на 2n,  что невозможно — получаем противоречие.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!