Тема . Комбинаторная геометрия

Принцип крайнего, индукция и другие методы в комбигео

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела комбинаторная геометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68026

На прямой выбрано несколько отрезков так, что всех их концы различны. Докажите, что на этой прямой можно отметить несколько точек так, чтобы на каждом отрезке было отмечено нечётное количество отмеченных точек.

Источники: Курчатов-2023, 11.2 (см. olimpiadakurchatov.ru)

Подсказки к задаче

Подсказка 1

Очень часто в задачах на отрезки, где не указано из количество, помогает индукция) Попробуем начать с маленького количество отрезков, как-то порисуем и поймем, как переходить к большему количеству.

Подсказка 2

На одном отрезке достаточно отметить одну точку. Что происходит на двух? Мы ставим точку на какой-то отрезок. Если условие для второго еще не выполнено, ставим другую точку. А что, если такой же алгоритм придумать для большего количества чисел по индукции на количество отрезков?)

Показать доказательство

Пусть выбрано n  отрезков. Докажем утверждение методом математической индукции по n.

1.

База: Для одного отрезка просто отметим его правый конец.

2.

Переход: Пусть мы можем так отмечать для n  отрезков. Докажем, что мы сможем так сделать для n +1  отрезков. Для этого рассмотрим отрезок, у которого конец находится правее всех концов других отрезков. Далее «забудем» про этот отрезок, и для оставшихся отрезков применим предположение. Теперь «вспомним» отрезок. Если он содержит нечетное число отмеченных точек, то мы смогли отметить точки нужным образом. Если же это не так, то дополнительно отметим его конец, так как он самый правый, то остальные отрезки его не содержат и мы получим требуемое.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!