Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Функции на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#49764

Функция F  определена на множестве троек целых чисел и принимает действительные значения. Известно, что для любых четырёх целых чисел a,b,c  и n  выполняются равенства F (na,nb,nc)= n⋅F(a,b,c),F(a+ n,b+ n,c+n)= F(a,b,c)+n  , F (a,b,c)= F(c,b,a)  . Найдите F(58,59,60).

Источники: ОММО-2022, номер 9, (см. olympiads.mccme.ru)

Показать ответ и решение

Заметим, что для n= −1

F(−1,0,1)= F(1,0,−1)= (−1)⋅F(−1,0,1)  =⇒  F (− 1,0,1)= 0

Отсюда легко видеть F(58,59,60)= F(−1,0,1)+59 =59.

Ответ:

 59

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!