Функции на ОММО
Ошибка.
Попробуйте повторить позже
График функции имеет две точки максимума и одну точку минимума. К графику провели касательную с
двумя точками касания. Найдите длину отрезка касательной между точками касания.
Подсказка 1
Пусть касательная это g(x). Тогда y(x)-g(x) имеет два кратных корня из касания. Это позволяет записать какие-то уравнения, связывающие функцию с точками касания.
Подсказка 2
Раз эти функции равны, то можно записать равенства коэффициентов при степенях многочленов. Отсюда можно получить абсциссы точек касания и уравнение касательной.
Подсказка 3
Точки касания должны получиться с x=-1 и x=2. Теперь остаётся только вычислить значения функции и применить теорему Пифагора.
Пусть — касательная из условия и
— координаты точек касания на оси
Так как в точках касания, то они являются корнями чётной кратности данного многочлена
Также в силу того, что коэффициент при старшей степени
равен
можем представить многочлен в следующем
виде:
Назовем правую часть тогда:
Запишем полученные для функций условия в точках касания в систему:
Из равенства коэффициентов следует:
Отсюда можно выразить и
:
То есть
Теперь можно найти коэффициенты
и
Получается, что
Значения касательной в точках касания:
Тогда длина отрезка касательной между точками касания — пусть
Получили искомое значение длины отрезка касательной между точками касания — 5.
5
Ошибка.
Попробуйте повторить позже
Функция , определённая на действительных числах, принимает действительные значения. Известно, что для любых действительных
и
выполнено равенство
. Найдите все такие функции
.
Подсказка 1
Давайте подумаем. Обычно мы хотим, когда видим функциональные уравнения, подставить что-то удобное вместо y. Что здесь можно такое подставить, чтобы у нас получилось удобное уравнение? В каком бы виде мы бы хотели видеть это уравнение?
Подсказка 2
Если подставить y = 4x, то слева и справа будет f(x). Тогда мы сможем разбить наше уравнение на совокупность двух простых. Что либо f(x) = 0, либо f(4x) = 1. Значит ли это, что мы решили задачу?
Подсказка 3
А вот и нет! Ведь если у нас для любого x верно, что либо f(x) = 1, либо f(x) = 0, то не значит, что у нас возможны только такие функции. Это значит лишь то, что множество значений f равно 0 и 1. Поэтому для полного решения требуется доказать, что если f(x) = 0 в какой-то точке, то f(x) = 0 тождественно. Тогда переход, о котором говорилось выше, корректен.
Если при каком-то выполняется
то для любого
верно
поэтому для любого
выполняется
Если же для любого значения
, то для любого
должно быть выполнено
где после сокращения на получаем
Таких функции две: константа 0 и константа 1. ()
Ошибка.
Попробуйте повторить позже
Найдите все функции , для которых существует такое вещественное число
, что при всех вещественных
выполнено
равенство
Источники:
Подсказка 1
Заметим, что правая часть несимметрична относительно x и y, а левая - симметрична) Как тогда можно связать x и y?
Подсказка 2
f(x)f(y) - f(x) - 2y + a = 2f(xy+3)=f(y)f(x) - f(y) - 2x + a ⇒ f(x) - 2x = f(y) - 2y. Значит, разность f(x) - 2x постоянна! Как тогда записать f(x) и что с этим можно сделать?
Подсказка 3
f(x) = 2x + C, для некоторого действительного C и любого x) Остается лишь подставить это в равенство из условия, найти C и a)
Заметим, что
Значит, при всех выполнено
. Значит, разность
постоянна и
, для некоторого
. Подставляя в исходное равенство, получаем, что при всех
выполнено равенство:
Оно тождественно выполнено только при ; при этом
Ошибка.
Попробуйте повторить позже
Функция определена на множестве троек целых чисел и принимает действительные значения. Известно, что для любых четырёх целых
чисел
и
выполняются равенства
,
. Найдите
Источники:
Подсказка 1
Давайте посмотрим на нашу функцию и на то, что с ней можно делать. Во-первых, можно выносить общий множитель из аргумента. Во вторых, можно вычитать, прибавлять что угодно и к аргументам функции, и к её значению, при этом равенство останется верным. Ещё наша функция симметрична относительно первой и второй переменной. Теперь подумаем, как нам можно получить F(58,59,60). Это три последовательных числа. Значит, чтобы получить значение на этих значениях, мы можем найти значение в точке F(k-1,k,k+1) и потом по второму свойству найти требуемое. При этом как-то надо воспользоваться двумя другими условиями. Попробуйте подобрать такое k, чтобы значение в нём можно было бы найти с помощью двух других условий.
Подсказка 2
Если вы еще не нашли такое k, то давайте вместе подумаем, каких бы свойств нам хотелось бы от k. Во-первых, надо, чтобы оно определялось (то есть его значение становилось известным) только через первое и третье условие, так как если оно известно через второе, то это нам не подходит, поскольку тогда либо существует тройка, значение которой определяется через первое и третье условие, либо все значения определяются через второе, однако последнее, очевидно, неверно. Значит, существует тройка, которая определяется через первое и третье. Поскольку оба этих условия не дают свободного члена, то единственное, что мы можем получить из этих уравнений - это 0, поскольку, если мы получим равенство двух значений, без свободного члена, то это будет их отношение и , коль скоро, мы не используем второе выражение, то единственное отношение, которое можно получить и найти значение функции в точке - это 0. Значит, нам нужно получить 0. Значит, с одной стороны функция равна себе, а с другой стороны минус себе. Попробуйте что-то с этим сделать.
Подсказка 3
Если мы хотим, чтобы функция в точках была равна минус себе, то так как n*F(a,b,c) = n*F(c,b,a) = F(na,nb,nc), мы хотим, чтобы na = -nc, nb = - nb, nc = -na. Но из второго равенства следует, что nb=0, а значит и b = 0(иначе, n = 0, и у нас просто функция от нулей равна 0. Что не подходит нам под условие на k-1,k,k+1. Значит, b = 0, a = -1, c = 1. И значит, F(-1,0,1)= 0 = F(58,59,60) - 59.
Заметим, что для
Отсюда легко видеть
Ошибка.
Попробуйте повторить позже
Функция определена на целых числах и принимает целые значения, причем
для каждого целого
. Назовем число
красивым, если для любого целого числа
выполнено
. Может ли каждое из чисел 739 и 741 быть
красивым?
Источники:
Подсказка 1
Попробуйте предположить, что оба этих числа являются красивыми, и используйте условие для установления связи между f(x+2) и f(x)
Подсказка 2
Эти значения функции должны оказаться одинаковыми для любого х! Какие свойства функции нам это дает?
Подсказка 3
Ага, оказывается, что на аргументах одинаковой чётности должны приниматься одинаковые значения. А не окажется ли, что при всех аргументах функция будет константой?
Подсказка 4
Можно подставить x=0 и использовать условие "красивости" числа 739 для того, чтобы установить f(x)≡c. Осталось использовать условие, что не может быть f(x)=x, и задача в кармане!
Предположим, что каждое из чисел и
оказалось красивым. Тогда
Значит, найдутся такие целые числа и
, что во всех чётных числах функция
принимает значение
, а во всех нечётных —
значение
С другой стороны, если оказалось красивым, то
Тогда
равна какой-то целочисленной константе для
любого аргумента
Получаем противоречие с условием
при значении аргумента, равном этой челочисленной
константе.
Ошибка.
Попробуйте повторить позже
Про функции и
известно, что
и
Докажите, что если , то
Подсказка 1
Давайте переведем задачу на "язык функций" и попробуем доказать, что h(x) = p(x) + 2q(x) - 3x не убывает на [0;1]. Какие инстурменты у нас для этого есть?
Подсказка 2
В случае возрастания производная должна быть неотрицательной! Как её можно посчитать?
Подсказка 3
При помощи условия можно прийти к выражению, зависящего от производной p(x). Осталось лишь понять, почему же выражение неотрицательно!
Заметим, что , поэтому для доказательства неравенства достаточно проверить, что функция
возрастает
на промежутке
. Для этого докажем, что её производная на этом промежутке неотрицательна. Это можно сделать двумя
способами.
Первый способ, подстановка:
поскольку , как следует из условия, неотрицательна.
Второй способ, неравенство о средних:
где неравенство следует из неравенствао средних для трёх чисел, а последнее равенство — из условия.
Ошибка.
Попробуйте повторить позже
Пусть
Найдите для
Источники:
Подсказка 1
Нам нужно посчитать значение какой-то суммы. Наверное, считать по отдельности каждый член будет не очень удобно. Может, попытаемся разбить эту сумму на пары?
Подсказка 2
Само условие намекает нам рассмотреть f(0)+f(1), (1/n)+f((n-1)/n), т.е. суммы f(x)+f(1-x). Чему равна эта сумма?
Подсказка 3
С функцией f(n)=9ⁿ/(9ⁿ+3) неудобно работать, поэтому давайте поделим числитель и знаменатель на 9ⁿ: f(n)=1/(1+3/9ⁿ). Тогда f(1-n)=1/(1+9ⁿ/3). Посмотрите, чему равна сумма f(n)+f(1-n) и доведите решение до конца!
При слагаемых будет
— чётное количество, поэтому их можно разбить на
пар вида
, посмотрим на
сумму в такой паре
Отсюда сумма и
(количество пар).
Ошибка.
Попробуйте повторить позже
Функция для всех
удовлетворяет равенству
а при задаётся формулой
. Найдите
Источники:
Подсказка 1
Из условия видно, что мы можем с помощью "наращивания" искать значения от сколь угодно больших аргументов, но нам бы хотелось делать это еще и как-то удобно и быстро. В этом нам мешает слагаемое x в выражении f(x+3)=x+2-f(x). Но, кажется, при повторении этой операции из-за минуса x должен уйти...
Подсказка 2
Действительно, f(x+6)=3+f(x). Тогда с помощью индукции можно установить, что f(x+6k)=3k+f(x). Как нам тогда найти f(2012)?
Подсказка 3
f(2012)=f(2+6*335), поэтому f(2012)=1005+f(2). Найдите f(2) и завершите решение!
Применим условие дважды
Используя это, получим
Ошибка.
Попробуйте повторить позже
Решите уравнение
где
Уравнение имеет корень
Этот же корень имеет уравнение
Других корней быть не может, поскольку
функция
убывает, а
— возрастает.
Ошибка.
Попробуйте повторить позже
Пусть
Найдите значение функции
в точке
Источники:
Подсказка 1
Линейная функция, какая легкотня! Хотя погодите, похоже все не так просто... Давайте попробуем посмотреть на f(f(x)) или же сразу посмотреть на f(f(4))...
Подсказка 2
f(f(x))=(x+24)/9. Ничего красивого. Давайте подставим 4, может, хоть тогда что-нибудь увидим: f(f(4))=28/9=(27+1)/9. Хммм, а ведь f(4)=10/3=(9+1)/3. Какое предположение напрашивается?
Подсказка 3
Верно, f(f(..f(4)...))=(3ⁿ⁺¹+1)/3ⁿ. Убедитесь в этом с помощью индукции и вычислите ответ!
Первое решение.
Посмотрим, что происходит при применении к некоторому числу. Заметим, что
, т. е. каждое применение
сокращает расстояние от числа до
в три раза. Для
оно было равно
, а значит, после
применений
это расстояние
станет равным
. Соответственно, само число станет равным
Второе решение.
По формуле для суммы геометрической прогрессии, последнее выражение равно
Подставляя , получаем ответ.
Замечание. Формально мы доказываем по индукции, что . База для
очевидна, а
переход
тривиален. Остаётся подставить и упростить формулу суммы геометрической прогрессии