Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Функции на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#63745

Найдите все функции f :ℝ → ℝ  , для которых существует такое вещественное число a  , что при всех вещественных x,y  выполнено равенство

2f(xy+ 3)=f(x)f(y)− f(x)− 2y+a

Источники: ОММО-2023, номер 9 (см. olympiads.mccme.ru)

Показать ответ и решение

Заметим, что

f(x)f(y)− f(x)− 2y+ a= 2f(xy+ 3)=2f(yx+3)= f(y)f(x)− f(y)− 2x+ a.

Значит, при всех x,y ∈ ℝ  выполнено f(x)− 2x= f(y)− 2y  . Значит, разность f(x)− 2x  постоянна и f(x)= 2x+ C  , для некоторого C ∈ℝ  . Подставляя в исходное равенство, получаем, что при всех x,y ∈ℝ  выполнено равенство:

                            2
2(2xy+ 6+ C)= 4xy +2Cx +2Cy +C  − 2x− C− 2y+ a.

Оно тождественно выполнено только при C = 1  ; при этом a= 14.

Ответ:

 f(x)= 2x +1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!