Функции на ОММО
Ошибка.
Попробуйте повторить позже
Функция определена на целых числах и принимает целые значения, причем
для каждого целого
. Назовем число
красивым, если для любого целого числа
выполнено
. Может ли каждое из чисел 739 и 741 быть
красивым?
Источники:
Предположим, что каждое из чисел и
оказалось красивым. Тогда
Значит, найдутся такие целые числа и
, что во всех чётных числах функция
принимает значение
, а во всех нечётных —
значение
С другой стороны, если оказалось красивым, то
Тогда
равна какой-то целочисленной константе для
любого аргумента
Получаем противоречие с условием
при значении аргумента, равном этой челочисленной
константе.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!