Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Функции на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#65398

Функция g  определена на целых числах и принимает целые значения, причем g(x)⁄=x  для каждого целого x  . Назовем число a  красивым, если для любого целого числа x  выполнено g(x)=g(a− x)  . Может ли каждое из чисел 739 и 741 быть красивым?

Источники: ОММО-2021, номер 9, (см. olympiads.mccme.ru)

Показать ответ и решение

Предположим, что каждое из чисел 739  и 741  оказалось красивым. Тогда

g(x+ 2)=g(741 − (x+ 2))= g(739− x)= g(x)

Значит, найдутся такие целые числа b  и c  , что во всех чётных числах функция g  принимает значение b  , а во всех нечётных — значение c.

С другой стороны, если 739  оказалось красивым, то b= g(0)= g(739− 0)= c.  Тогда g(x)  равна какой-то целочисленной константе для любого аргумента x.  Получаем противоречие с условием g(x)⁄= x  при значении аргумента, равном этой челочисленной константе.

Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!