Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)

Тождественные преобразования на ОММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#30987

При каком наименьшем натуральном k  выражение

2017⋅2018⋅2019⋅2020 +k

является квадратом натурального числа?

Источники: ОММО-2019, номер 3, (см. olympiads.mccme.ru)

Показать ответ и решение

Достаточно показать, что для k =1  условие выполнено, поскольку это наименьшее натуральное число. Действительно, обозначим n =2017,  тогда

                      2      2
n(n+ 1)(n +2)(n +3)+ 1= (n + 3n)(n + 3n+2)+ 1=

    2    2    2           2       2
= (n +3n) + 2(n + 3n)+1= (n + 3n +1)
Ответ:

 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!