Тема . Десятичная запись и цифры

Последняя цифра

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела десятичная запись и цифры
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#40086

Аня выписала одно за другим 2018  чисел

1⋅2 2⋅3 3⋅4    2018-⋅2019
 2 , 2 , 2 ,...,   2

и вычислила их. Сколько из получившихся чисел имеют в десятичной записи последнюю цифру 5?

Источники: ПВГ-2019, 11.2 (см. rsr-olymp.ru)

Подсказки к задаче

Подсказка 1!

Итак, в задаче надо выяснить, как часто последняя цифра будет 5. Давайте просто возьмем и попробуем написать последние цифры у некоторого количества чисел из последовательности.

Подсказка 2!

Так как нам нужно посчитать, как часто встречается 5, было бы здорово заметить какую-то периодичность... Можно, конечно, просто повыписывать числа, но давайте попробуем проанализировать. Нам даны числа вида N(N+1)/2 и мы хотим чтобы у этого совпала последняя цифра с каким-то (N+X)(N+1+X)/2, это будет значить, что у нас период длины Х!. Что же это может быть за Х...

Подсказка 3!

Ага, нехитрыми алгебраическими вычислениями заметим, что 20 подойдет! Ну все, самое важное мы уже сделали, осталось как-то хитро (или не очень) подсчитать 5ки!

Показать ответ и решение

Поскольку для любого натурального n  от 1  до (2018− 20)  разность (n+20)⋅(n+21)-− n⋅(n+1)= 20n +210
    2         2  делится на 10,  то числа (n+20)⋅(n+21)
     2  и n⋅(n+1)
  2  заканчиваются на одну и ту же цифру, то есть последовательность последних цифр данных в условии чисел периодическая с периодом T = 20.

Также заметим, что n⋅(n+1)
   2  = 1+ ...+n.  Можно легко выписать последние цифры первых 20  чисел, прибавляя к предыдущему номер текущего числа и беря остаток по модулю 10:1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3,1,0,0.

В группе из 20  чисел цифра 5  встречается 4  раза. Среди 2018  чисел есть 100  групп по 20  чисел и последняя группа на 18  чисел, а которой также четыре пятёрки. В итоге всего пятёрок 100⋅4 +4 =404  штуки.

Ответ:

 404

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!