Тема . Физтех и вступительные по математике в МФТИ

Квадратные трёхчлены на Физтехе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#38128

Даны две линейные функции f(x)  и g(x)  такие, что графики y =f(x)  и y = g(x)  — параллельные прямые, не параллельные осям координат. Известно, что график функции        2
y = (f(x))  касается графика функции y =11g(x).  Найдите все значения A  такие, что график функции         2
y =(g(x))  касается графика функции y = Af(x).

Источники: Физтех-2018, 11.2 (см. olymp.mipt.ru)

Показать ответ и решение

Пусть f(x)=kx +a,g(x)= kx+ b  . В силу условие на касание графиков у уравнения k2x2+2kax+ a2 = 11kx+ 11b  должен быть нулевой дискриминант, то есть

        2    2 2                  2      2     2
(2ka− 11k)− 4k(a − 11b)= 0  ⇐⇒   −44ka+ 121k  +44kb =0

Из условия k ⁄= 0  , то есть 4(b− a)+ 11=0  .

Теперь запишем второе условие k2x2 +2kbx+ b2 = kAx +aA  , условие на дискриминант

        2   2 2          2     2 2   2
(2kb− Ak) − 4k (b − aA)= −4k bA + A k +4k aA= 0

Если A= 0  , то квадрат касается прямой y =0  , что нам подходит, иначе − 4b+A + 4a = 0 ⇐ ⇒  A = 4(b− a)= −11  . Поскольку условие на дискриминант равносильно условию задачи, то мы нашли все подходящие A  .

Ответ:

 0,−11

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!