Квадратные трёхчлены на Физтехе
Ошибка.
Попробуйте повторить позже
Подсказка 1
Пункт (а). Обратите внимание, что наша квадратичная функция по условию принимает равные значения при n + 1 и n + 2. О чем нам это говорит?
Подсказка 2
Если f(n + 1) = f(n + 2), тогда ось симметрии графика нашей квадратичной функции проходит через x = n + 1,5. Также мы знаем, что наша квадратичная функция при x = n равна 6. Чему тогда равно f(n + 3)?
Подсказка 3
Перейдём к (б)! Заметьте, что при отдалении от вершины значения функции увеличиваются, значит, минимальное значение будет в вершине. Нам нужно найти f(n + 1,5). Но мы не знаем, чему равно n. Какое преобразование данной функции не повлияет на значения функции, но позволит нам избавиться от n?
Подсказка 4
Давайте сдвинем квадратичную функцию на (n+1) влево по оси Ox и назовем новую функцию g(x). Мы получили, что f(n + 1,5) = g(0,5). Как же мы можем найти функцию g(x) и ее значения? Не забывайте про условия, которыми мы пользовались в пункте а.
Подсказка 5
Из условия нам известно, что g(-1) = 6, g(0) = 5, g(1) = 5. Зная значение квадратичной функции в трех точках, можно легко составить систему уравнений с тремя неизвестными и найти все коэффициенты квадратичной функции.
Рассмотрим квадратный трехчлен для некоторых действительных
Имеем, что
Таким образом,
Вычитая из первого уравнения
третье и сократив на два, получим, что
Подставляя найденные значения в последнее уравнение, имеем
Тем самым мы
показали, что
(b) Графики трехчленов отличаются и
отличаются переносом на вектор, сонаправленный с осью
следовательно, их
минимальные значения совпадают. Своего минимального же значения функция
достигает в точке
Наконец, оно
равно
______________________________________________________________________________________________________________________________________________________
Замечание. Альтернативное решение пункта a) можно получить так. Поскольку квадратичная функция принимает одинаковые
значения в точках и
симметричных относительно абсциссы вершины параболы
то
она принимает равные
значения так же в точках
и
, следовательно,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!