Тема . Физтех и вступительные по математике в МФТИ

Тригонометрия на Физтехе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#31976

Известно, что

-----cos3x----   2    2
(2cos2x − 1)cosy = 5 + cos (x +y)

и

----sin3x----= 3 +sin2(x+ y).
(2cos2x+ 1)siny  5

Найдите все возможные значения выражения cos(x +3y)  , если известно, что их не менее двух.

Источники: Физтех 2019, 13.2 (olymp.mipt.ru)

Показать ответ и решение

Заметим, что sin3x= sinx(4cos2x − 1)= sinx(2cos2x+ 1)  , а cos3x =cosx(4cos2 x− 3)= cosx(2cos2x − 1)  . Значит, нам дано

cosx  2    2          sinx  3    2
cosy = 5 + cos(x+ y) и -siny = 5 +sin (x+ y)

и некоторые ограничения на x  и y

Сложим эти 2 уравнения:

cosx+ sin-x= 2
cosy  sin y

cosxsiny+ sinxcosy =2cosysiny

sin(x+y)= sin2y
  • Если x +y =2y+ 2πk  , то по условию

    1= 2+ cos2(x +y)= 2 +cos2(2y)  и  1 = 3 +sin2(x+ y)= 3+ sin2(2y)
   5            5                5             5

    Тогда                    2        1
cos(x +3y)= cos4y = 2cos(2y)− 1= 5  .

  • Если x +y =π − 2y+ 2πk  , то cos(x+ 3y) =− 1  .

Значит, возможные значения — это − 1  и 1
5  . Какие-то из них могли бы не достигаться из-за ОДЗ, но мы точно знаем, что значений хотя бы 2 и поэтому они оба достигаются.

Ответ:

 {1∕5;−1}

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!