Тема . Физтех и вступительные по математике в МФТИ

Стереометрия на Физтехе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#33674

На рёбрах AC,BC, BS,AS  правильной треугольной пирамиды SABC  с вершиной S  выбраны точки K,L,M,N  соответственно. Известно, что точки K,L,M,N  лежат в одной плоскости, причём KL = MN = 2,KN = LM = 18  . В четырёхугольнике KLMN  расположены две окружности Ω1  и Ω2  , причём окружность Ω1  касается сторон KN,KL  и LM  , а окружность Ω2  касается сторон KN,LM  и MN.  Прямые круговые конусы ℱ1  и ℱ2  с основаниями Ω1  и Ω2  соответственно расположены внутри данной пирамиды, причём вершина P  конуса ℱ1  лежит на ребре AB  , а вершина Q  конуса ℱ2  лежит на ребре CS  .

а) Найдите ∠SAB

б) Найдите длину отрезка CQ  .

Источники: Физтех-2019, 11.7, (см. olymp.mipt.ru)

Показать ответ и решение

Противоположные стороны четырёхугольника KLMN  попарно равны, так что он параллелограмм. Поскольку плоскость (KLMN  )  пересекает плоскости (ABC )  и (ABS )  по параллельным прямым KL  и MN  , эти прямые параллельны прямой пересечения этих плоскостей, то есть AB  . Аналогично, NK ∥LM ∥ SC  . В правильной треугольной пирамиде скрещивающиеся рёбра перпендикулярны друг другу, поэтому SC ⊥AB  , а KLMN  − прямоугольник. Следовательно, радиусы окружностей Ω1  и Ω2  равны 1.

Отсюда также следует, что прямоугольник KLMN  симметричен относительно плоскости α  , содержащей ребро SC  и середину AB  . Тогда и конусы ℱ1  и ℱ2  также симметричны относительно этой плоскости. Поэтому P  — середина AB  .

PIC

Обозначим через X  и Y  середины сторон KL  и MN  соответственно, а через O1  и O2− центры окружностей Ω1  и Ω2  соответственно; эти четыре точки лежат на оси симметрии прямоугольника KLMN  , параллельной KN  , а значит — в плоскости α  . Более того, XY ∥SC  , то есть треугольники PCS  и P XY  подобны.

Пусть AB = BC = CA = 2a,SA =SB = SC =ℓ,ν = a∕ℓ  . Тогда CP = a√3,SP = √ℓ2−-a2  . Поскольку XY = KN = 18  , из подобия получаем

XP-   XY-
 CP = CS

XP    18     18√3a     √-
a√3-= ℓ-,XP = --ℓ-- =18ν 3

Аналогично,

                       √------
YP-= XY-,YP-= 18,Y P = 18-ℓ2−-a2= 18∘1-−-ν2
SP   CS  SP   ℓ          ℓ

C другой стороны, так как конус ℱ1− прямой, имеем P O1 ⊥ XY  , причём XO1 = 12KL  =1,YO1 =XY − XO1 = 17  . Отсюда

  2   2     2     2  (   2     2)  (   2     2)    2     2   2(    2   2)
17 − 1 =O1Y  − O1X =  O1Y + O1P  − O1X  + O1P  = PY − PX  = 18  1− ν − 3ν

         2(    2)
16⋅18= 18 1 − 4ν

    1
ν = 6

            AP               1
∠SAB  =arccosAS-= arccosν = arccos6

Итак, ℓ= 6a  , и из подобия имеем

-2 = KL-= CX-= 1− XP-= 1− XY- =1− 18 =1− 3,
2a   AB   CP      CP      CS       ℓ     a

откуда a= 4  и ℓ= 24  . Пусть P O1  пересекает SC  в точке H  . Тогда PH  — высота треугольника SCP  , причём (поскольку XY ∥CS  ) CCHS-= XXOY1-= 118-  . Значит, CH = S1C8 = 43  . Поскольку O2Q⊥ XY,HO1O2Q  — прямоугольник, так что HQ = O1O2 = 16  . Отсюда CQ = CH + HQ = 532  .

Ответ:

а) ∠SAB = arccos1;
            6

б)     52
CQ=  3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!