Тема Физтех и вступительные по математике в МФТИ

Стереометрия на Физтехе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#107203

Шар Ω  касается всех рёбер правильной усечённой пирамиды, а шар ω  касается всех её граней. Пусть сторона верхнего основания меньше, чем сторона нижнего. Найдите отношение площади боковой поверхности пирамиды к площади её нижнего основания.

Источники: Физтех - 2025, 11.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

Пусть A A  ...A
 1 2    n  — нижнее, а B B ...B
 1 2    n  -— верхнее основание данной усечённой пирамиды; O  и O
  1  — центры этих оснований (соответственно); M  и M1  — середины рёбер A1A2  и B1B2  (соответственно). Из теоремы о равенстве отрезков касательных, проведённых к шару из одной точки, следует, что

MM1 = MO + M1O1

и

                              π                 π
A1B1 = A1M + B1M1; MO = A1M ctgn , M1O1 =B1M1 ctg n

следовательно,

                    π         π
MM1 = (A1M +B1M )ctg n = A1B1ctgn

Но MM1  <A1B1  , то есть

ctg π< 1⇒  π> π ⇒ n< 4
   n      n  4

Поэтому данная в условии усечённая пирамида треугольная. Обозначим длину ребра нижнего основания через a  , верхнего — через   b  . Так как шар Ω  касается всех рёбер пирамиды, её боковая грань A A B B
 1 2 2 1  — описанная равнобокая трапеция с основаниями a  и b  .

PIC

Радиус вписанной окружности найдем из прямоугольного треугольника A1QB1  :

QT 2 = A1T ⋅B1T =A1M ⋅B1M1 = ab
                           4

QT = 1√ab
    2  , следовательно, MM1 = √ab  . Но

MM  = MO  +M  O = -a√-+ -b√- ,
   1         1 1  2 3  2 3

поэтому

a+ b  √--
2√3-=  ab.

Имеем (a+b)2 = 12ab  , откуда        √-
ba = 5− 2 6= 5+12√6(  так как a> b)  . Значит,

  Sбок     3⋅ a+b-⋅MM1  2√3(2√3ab)√ab    b        √-
SA1A2A3 = --(2a2√3)---= -----a2----- =12a =60− 24 6
              4
Ответ:

 60− 24√6

Ошибка.
Попробуйте повторить позже

Задача 2#80773

Дана правильная шестиугольная пирамида SABCDEF  (S  — вершина) со стороной основания 2  и боковым ребром 4.  Точка X  лежит на прямой SF,  точка Y  — на прямой AD,  причём отрезок XY  параллелен плоскости SAB  (или лежит в ней). Найдите наименьшую возможную длину отрезка XY.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

За (ABC )  будем обозначать плоскость, проходящую через точки A  , B  и C.

Возьмем на прямой SC  такую точку Z  , что SZ =SX  . Тогда

XZ ∥FC ∥AB ∥(ABS )

На прямой AF  же возьмём точку T  такую, что XT ∥AS ∥(ABS)  . Получается, что плоскость (XZT )∥ (ABS )  Тогда XY  лежит в плоскости (XZT )  . (XZT )  пересекает плоскость основания по прямой TK  (K ∈ BC  ), параллельной AB.

PIC

Пусть AT = a  . Тогда TF = |2− a| , TX = 2TF =2|2− a| . Треугольник ATY  будет правильным (есть 2 угла по 60∘ ), т.е. TY = AT =a  .

       (
       { ∠SAB =arccos14, a <2
∠XT Y = ( 180∘− ∠SAB = 180∘− arccos1, a> 2,
                               4

т.к. это 2 угла с параллельными сторонами.

Рассматриваем треугольник XT Y  . XY 2 = XT2 +YT 2− 2XT ⋅TY ⋅cos(∠XT Y)  . Подставляем найденные значения.

4(2− a)2+a2− a|2− a|= XY2

Минимум выражения слева достигается при a =− −21⋅68= 1,5  и равно XY2 =2,5  . Тогда min(XY )= √2,5-

Ответ:

 ∘ 5
  2

Ошибка.
Попробуйте повторить позже

Задача 3#80774

В основании призмы лежит равносторонний треугольник площади 1. Площади её боковых граней равны 3, 3 и 2. Найдите объём призмы.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

Если бы призма была прямая, то площади боковых граней были бы равны. Значит, призма наклонная.

Обозначим призму ABCA1B1C1,  площади из условия SAA1B1B = SAA1C1C = 3.

Пусть A1K, A1M  — высоты параллелограммов AA1B1B  и AA1C1C.  Тогда A1K = A1M,  т.к. площади равны, а также равны их основания, так как равносторонний треугольник.

Пусть  ′
A — проекция A1  на плоскость ABC.  Тогда  ′     ′
A K = AM,  следовательно, точка равноудалена от прямых AB  и AC.

(a) Рассмотрим случай, когда  ′
A принадлежит биссектрисе AL  угла ∠ABC.  AL  — высота, медиана и биссектриса в равностороннем треугольнике.

PIC

AL ⊥ BC   }                ′
A1A′ ⊥ BC    =⇒   BC ⊥(AA1A )  =⇒  BC ⊥ AA1  =⇒   BC ⊥ BB1

Тогда получаем, что BB1C1C  — прямоугольник. Пусть сторона треугольника ABC  равна a.  Посчитаем площадь прямоугольника и параллелограмма.

S1 =a ⋅AA1, S2 = a⋅A1K

2 =a ⋅AA1, 3= a⋅A1K

Но A1K < AA1,  тогда

3= a⋅A1K < a⋅AA1 = 2

получаем противоречие.

(b) Рассмотрим случай, когда A′ принадлежит внешней биссектрисе AL  угла ∠ABC.

PIC

AA′ ∥BC  )|}
A1A∥BB1     =⇒   (AA1A′) ∥(BB1C )
AA′ ∥BC  |)

Но (AA1A′)⊥(ABC ),  следовательно, (BB1C)⊥ (ABC ),  откуда следует, что высота CH1  параллелограмма CC1B1B  совпадает с высотой призмы (C1H = A1A′).  В итоге

V = SABC ⋅CH1 = 4√3
Ответ:

√43-

Ошибка.
Попробуйте повторить позже

Задача 4#67591

Дана треугольная пирамида SABC,  медианы AA ,BB
  1   1  и CC
   1  треугольника ABC  пересекаются в точке M.  Сфера Ω  касается ребра AS  в точке L  и касается плоскости основания пирамиды в точке K,  лежащей на отрезке AM.  Сфера Ω  пересекает отрезок SM  в точках P  и Q.  Известно, что SP = MQ,  площадь треугольника ABC  равна 90,SA= BC = 12.

а) Найдите произведение длин медиан AA1,BB1  и CC1.

б) Найдите двугранный угол при ребре BC  пирамиды, если дополнительно известно, что Ω  касается грани BCS  в точке N,SN = 4,  а радиус сферы Ω  равен 5.

Источники: Физтех-2023, 11.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

а)

PIC

Поскольку SL  — касательная к сфере Ω,  а SP  и SQ  — секущие к ней, то по теореме о касательной и секущей

  2
SL = SP ⋅SQ

Аналогично,

   2
MK  = MP ⋅MQ

А поскольку MQ  = SP,  то

SP ⋅SQ = MP ⋅MQ

В итоге получаем

SL2 =SP ⋅SQ =MP  ⋅MQ = MK2 ⇒ SL =MK

Так как AL = AK  как касательные к сфере Ω,  проведённые из точки A,  то

AM = AK +MK  = AL+ SL =SA = 12

А поскольку медианы треугольника точкой пересечения делятся в отношении 2 :1  считая от вершины, то

     3
AA1 = 2AM = 18

Кроме того,

A1M  = AM = 6
        2

При этом

A1B =A1C = BC-= 6,
            2

то есть

A1M = A1B = A1C

Отсюда △BMC  прямоугольный и ∠BMC  =90∘.  Далее имеем

SBMC = SABC-= 1 ⋅BM  ⋅CM = 1⋅ 2BB1-⋅ 2CC1-⇒ BB1 ⋅CC1 = 3SABC =135
         3    2           2   3     3              2

Значит,

AA1 ⋅BB1 ⋅CC1 =18⋅135= 2430

б)

PIC

Пусть G  и H  — проекции точек M  и K  на прямую BC  соответственно. Заметим, что NH  ⊥BC,  потому что N  и K  — точки касания сферы Ω  со сторонами двугранного угла пирамиды при ребре BC.  Поэтому искомый угол равен

∠NHK  = 2∠OHK,

где O  — центр сферы Ω.

Далее имеем

       SABC-  1                2SABC-
SBMC =   3  = 2 ⋅BC ⋅MG ⇒ MG =  3BC   =5

Так как SL =SN = 4  как касательные к Ω,  то

AK = AL =SA − SL= 8

Отсюда получаем

A1K =AA1 − AK = 10

Из подобия △A1MG  и △A1KH  имеем

KH = MG ⋅ A1K = 25
         A1M    3

Окончательно,

tg∠OHK  = OK-= 3 ⇒ ∠NHK  =2∠OHK  = 2arctg 3
          KH   5                        5
Ответ:

a) 2430

б)      3
2arctg 5

Ошибка.
Попробуйте повторить позже

Задача 5#70779

Дана пирамида PQRS,  вершина P  которой лежит на одной сфере с серединами всех её рёбер, кроме ребра PQ.  Известно, что QR = 2,  QS = 1,      √-
PS = 2.  Найдите длину ребра RS.  Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

Источники: Физтех-2022, 11.7 (см. olymp.mipt.ru)

Показать ответ и решение

Пусть A,B,C,D,E  - середины рёбер PR,RS,QS,PS,QR  соответственно. Из теоремы о средней линии треугольника следует, что ADCE  и ABDP  - параллелограммы. Они вписаны в окружности, являющиеся сечениями сферы плоскостями ACD  и PRS  , поэтому эти параллелограммы - прямоугольники. Угол RP S  — прямой; прямые PQ  и RS  перпендикулярны, так как P Q∥AE, AE ⊥CE, CE ∥RS.

Отметим в плоскости PRS  точку  ′
Q такую, что           ′
△QRS = △Q RS,  а точки P  и  ′
Q лежат по разные стороны от прямой RS  (треугольник  ′
QRS  может быть получен из треугольника QRS  поворотом вокруг прямой RS).

PIC

Из равенства треугольников QRS  и Q′RS  следует, что основания их высот, опущенных на RS  — это одна и та же точка (назовём её H ).  Плоскость HQQ ′ перпендикулярна RS  (так как QH ⊥ RS,Q′H ⊥ RS),  поэтому QQ′ ⊥ RS.  Поскольку QQ ′ ⊥ RS  и PQ ⊥ RS,  то плоскость P QQ′ перпендикулярна RS  и PQ ′ ⊥RS.

Значит, диагонали четырёхугольника PRQ ′S  пересекаются под прямым углом (в точке H  ). По теореме Пифагора

PR2 =P H2+ RH2,Q′R2 = Q′H2+ RH2,

Q′S2 =Q ′H2 +SH2,P S2 = PH2+ SH2

Следовательно,

P S2+ Q′R2 = PR2+ Q′S2

     ∘-------------
PR =  22+ (√2)2− 12 = √5

Из прямоугольного треугольника PRS  находим

     ∘---2----2  √-
RS =  PR  +P S =  7

Радиус сферы, описанной около пирамиды PQRS  , не меньше радиуса r  окружности, описанной около грани QRS  . Пирамида, для которой достигается равенство, существует. Докажем это.

PIC

Рассмотрим сферу радиуса r  и окружность - её сечение, проходящее через центр сферы. В сечении сферы указанной плоскостью получится окружность с диаметром RS  , в которую можно вписать прямоугольный треугольник PRS  . По теореме косинусов из треугольника PRS  находим, что

          QR2+ QS2− RS2   4+1 − 7   1
cos∠RQS  = --2⋅QR-⋅QS----= 2-⋅2-⋅1--=− 2

∠RQS  =120∘

По теореме синусов

      RS      √7-
r = 2sin∠RQS-= √3-
Ответ:

 RS = √7,R  =∘ 7-
         min    3

Ошибка.
Попробуйте повторить позже

Задача 6#33366

Рассмотрим всевозможные тетраэдры ABCD  , в которых AB = 2,AC =CB = 5,AD  =  DB  =6  . Каждый такой тетраэдр впишем в цилиндр так, чтобы все вершины оказались на его боковой поверхности, причём ребро CD  было параллельно оси цилиндра. Выберем тетраэдр, для которого радиус цилиндра - наименьший из полученных. Какие значения может принимать длина CD  в таком тетраэдре?

Источники: Физтех - 2021, 11.2 (см. olymp.mipt.ru)

Показать ответ и решение

Пусть E  — середина AB.CE  и DE  — медианы равнобедренных треугольников ABC  и ABD  , a значит, биссектрисы и высоты. То есть AB ⊥ CE,AB ⊥ DE  . Значит, отрезок AB  перпендикулярен плоскости CDE  , следовательно, AB ⊥ CD  .

PIC

Таким образом, AB  лежит в плоскости, перпендикулярной оси цилиндра (обозначим эту плоскость через α  ). Сечение цилиндра этой плоскостью — окружность, а AB  является хордой этой окружности. Тогда радиус цилиндра минимален, если AB− диаметр. Отметим, что это возможно в силу того, что отрезки DE  и CE  длиннее, чем 12AB =1  . Действительно, из треугольников ACE  и ADE  следует, что

CE = ∘52-− 12 = 2√6,DE = ∘62−-12 = √35

Рассмотрим тетраэдр, в котором AB  является диаметром цилиндра. Возможны 2 случая: точки C  и D  лежат по одну (этот случай представлен выше) или по разные стороны плоскости α  .

Пусть H  - проекция точек C  и D  на плоскость α  . Угол ∠AHB  =90∘ , так как он вписан в окружность и опирается на её диаметр. AH = BH  в силу равенства треугольников ACH  и BCH  . Тогда AH =       √-
BH =  2  . По теореме Пифагора в прямоугольных треугольниках AHC  и DHC  соответственно: CH  =           --              --
√25− 2-=√ 23,DH = √36−-2= √34  .

Тогда, если точки C  и D  лежат по одну сторону от плоскости α  , то CD =DH  − CH = √34− √23  . Если точки C  и D  лежат по разные стороны от плоскости α  , то CD = DH + CH = √34+√23-  .

Ответ:

 √34-±√23

Критерии оценки

Доказано, что 𝐴𝐵 – диаметр цилиндра наименьшего радиуса – 2 балла; если при этом не проверено, что точки 𝐶 и 𝐷 могут лежать на боковой поверхности такого цилиндра (например, можно доказать, что треугольники 𝐴𝐵𝐶 и 𝐴𝐵𝐷 остроугольные; можно сделать, как в решении), то 1 балл вместо 2;

найдены оба значения 𝐶𝐷 – 3 балла;

найдено только одно значение 𝐶𝐷 – 1 балл вместо 3.

Ошибка.
Попробуйте повторить позже

Задача 7#33590

Сфера с центром O  вписана в трёхгранный угол с вершиной S  и касается его граней в точках K,L,M  (все плоские углы трёхгранного угла различны). Найдите угол KSO  и площадь сечения данного трёхгранного угла плоскостью KLM  , если известно, что площади сечений трёхгранного угла плоскостями, касающимися сферы и перпендикулярными прямой SO  , равны 1  и 4  .

Источники: Физтех - 2020, 11.4 (см. olymp.mipt.ru)

Показать ответ и решение

Обозначим точки пересечения прямой SO  со сферой через P  и Q  (точка P  лежит на отрезке SO  , а Q  — вне него). Пусть радиус сферы равен r  . Треугольники OKS, OLS  и OMS  прямоугольные (углы при вершинах K, L,M  прямые, так как касательные перпендикулярны радиусам, проведённым в точку касания). Эти треугольники равны по катету и гипотенузе (OK  =OL = OM = R,SO  — общая), следовательно, ∠KSO = ∠LSO = ∠MSO (  пусть ∠KSO = α,SO= x)  . Высоты, опущенные из точек K,L,M  на гипотенузу  SO  , paвны, а их основания — одна и та же точка H  , лежащая в плоскости KLM  (назовём эту плоскость τ)  . Пусть β  и γ  касательные плоскости к сфере, проходящие через точки P  и Q  , а E  и F  — точки пересечения этих плоскостей с прямой SK  . По условию площади сечений трёхгранного угла этими плоскостями равны соответственно S1 =1  и S2 =4  . Рассмотрим сечение трехгранного угла и сферы плоскостью SKO  (см. рис. и обозначения на нем). Так как SH ⊥HK  и SH ⊥ HL  , то τ ⊥ SH  . Тогда сечения трёхгранного угла плоскостями τ,β  и γ  — подобные треугольники, плоскости которых параллельны (все они перпендикулярны SO )  .

Если Σ  — площадь треугольника, получающегося в сечении трёхгранного угла плоскостью KLM  , то из подобия Σ :S1 :S2 = KH2 :EP2 :FQ2.  Следовательно,          √-- √--
EP :FQ =  S1 : S2.  Тогда √ -- √--
  S1 : S2 = SP :SQ= (x− r) :(x+ r),  откуда     √-- √--
r= x√SS22−+√SS11,  a          √-- √--
sinα = rx = √SS22−+√SS11 = 13.  Отсюда ∠KSO  =arcsin13.

PIC

Далее, OH = rsinα,SH = SO− OH = -r- − rsin α,SP = SO− r=-r- − r.
                        sinα                   sinα  Значит, Σ :S1 = KH2 :EP2 =SH2 :SP2 = (-1 − sin α)2 :(-1 − 1)2 = (1+sinα)2 = 16,
                            sinα         sinα                  9  откуда Σ= 16.
    9

Ответ:

 ∠KSO =arcsin1,S = 16
            3    9

Ошибка.
Попробуйте повторить позже

Задача 8#100421

(a) Сфера с центром O  касается боковых рёбер SA,SB,SC  пирамиды SABC  в точках K,L,M  соответственно, а также касается её основания ABC.  Через точку сферы, ближайшую к точке S,  проведена плоскость, касающаяся сферы. Площадь сечения пирамиды SABC  этой плоскостью равна 9, а            √35-
∠KSO = arccos 6  . Найдите площадь треугольника KLM.

(b) Пусть дополнительно известно, что SO = 25,  а плоскости KLM  и ABC  параллельны. Найдите объём пирамиды SABC.

Источники: Физтех - 2020, 11.4 (см. olymp.mipt.ru)

Показать ответ и решение

а) Пусть радиус сферы равен R  . Обозначим точки пересечения прямой SO  со сферой через P  и Q  (точка P  лежит на отрезке SO  , а Q  — вне него). Треугольники OKS,OLS  и OMS  прямоугольные (углы при вершинах K,L,M  прямые, так как касательные перпендикулярны радиусам, проведённым в точку касания). Эти треугольники равны по катету и гипотенузе (OK =OL = OM = R,SO  — общая), следовательно, ∠KSO = ∠LSO = ∠MSO  (обозначим эти углы через         1
α;sinα = 6  ); высоты, опущенные из точек K,L,M  на гипотенузу SO  , равны, а их основания — одна и та же точка H  , лежащая в плоскости KLM  (назовём эту плоскость τ)  . Пусть σ  — касательная плоскость к сфере, проведённая через точку P  . Обозначим точку пересечения σ  и SA  через E  . Рассмотрим сечение пирамиды и сферы плоскостью ASO

PIC

Из прямоугольного треугольника KSO  получаем SO = siRnα  . Тогда

               (      )
SP = SO − OP = R-1--− 1
                sinα

Пусть площадь сечения пирамиды плоскостью σ  равна S0 =9  , а плоскостью τ − SKLM  . Из подобия следует, что

                  2          2          2   2
SKLM :S0 = (KH :EP )= (SH :SP) = (SO − OH) :SP =

  ( R        )2   2(  1    )2         2
=  sinα-− Rsinα   :R  sinα − 1 = (1+sin α)

Следовательно,

SKLM = S0(1 +sin α)2 = 12,25

б) Если плоскости τ  и ABC  параллельны, то точка A  совпадает с точкой A1  такой, что A1Q ⊥ SO :

PIC

Тогда, обозначив площадь треугольника ABC  через SABC  , получаем

        1           1            ( SQ)2
VSABC = 3 ⋅SQ ⋅SABC = 3 ⋅(SO +R)⋅S0⋅ SP  =

= 13 ⋅(SO+ SOsinα)⋅S0⋅(SO +SO sinα)2 :(SO − SO sinα)2 =

                   3
= 1 ⋅SO ⋅S0⋅ (1+-sinα)2 = 343
  3        (1− sinα)    2
Ответ:

(a) 12,25

(b) 171,5

Ошибка.
Попробуйте повторить позже

Задача 9#33674

На рёбрах AC,BC, BS,AS  правильной треугольной пирамиды SABC  с вершиной S  выбраны точки K,L,M,N  соответственно. Известно, что точки K,L,M,N  лежат в одной плоскости, причём KL = MN = 2,KN = LM = 18  . В четырёхугольнике KLMN  расположены две окружности Ω1  и Ω2  , причём окружность Ω1  касается сторон KN,KL  и LM  , а окружность Ω2  касается сторон KN,LM  и MN.  Прямые круговые конусы ℱ1  и ℱ2  с основаниями Ω1  и Ω2  соответственно расположены внутри данной пирамиды, причём вершина P  конуса ℱ1  лежит на ребре AB  , а вершина Q  конуса ℱ2  лежит на ребре CS  .

а) Найдите ∠SAB

б) Найдите длину отрезка CQ  .

Источники: Физтех-2019, 11.7, (см. olymp.mipt.ru)

Показать ответ и решение

Противоположные стороны четырёхугольника KLMN  попарно равны, так что он параллелограмм. Поскольку плоскость (KLMN  )  пересекает плоскости (ABC )  и (ABS )  по параллельным прямым KL  и MN  , эти прямые параллельны прямой пересечения этих плоскостей, то есть AB  . Аналогично, NK ∥LM ∥ SC  . В правильной треугольной пирамиде скрещивающиеся рёбра перпендикулярны друг другу, поэтому SC ⊥AB  , а KLMN  − прямоугольник. Следовательно, радиусы окружностей Ω1  и Ω2  равны 1.

Отсюда также следует, что прямоугольник KLMN  симметричен относительно плоскости α  , содержащей ребро SC  и середину AB  . Тогда и конусы ℱ1  и ℱ2  также симметричны относительно этой плоскости. Поэтому P  — середина AB  .

PIC

Обозначим через X  и Y  середины сторон KL  и MN  соответственно, а через O1  и O2− центры окружностей Ω1  и Ω2  соответственно; эти четыре точки лежат на оси симметрии прямоугольника KLMN  , параллельной KN  , а значит — в плоскости α  . Более того, XY ∥SC  , то есть треугольники PCS  и P XY  подобны.

Пусть AB = BC = CA = 2a,SA =SB = SC =ℓ,ν = a∕ℓ  . Тогда CP = a√3,SP = √ℓ2−-a2  . Поскольку XY = KN = 18  , из подобия получаем

XP-   XY-
 CP = CS

XP    18     18√3a     √-
a√3-= ℓ-,XP = --ℓ-- =18ν 3

Аналогично,

                       √------
YP-= XY-,YP-= 18,Y P = 18-ℓ2−-a2= 18∘1-−-ν2
SP   CS  SP   ℓ          ℓ

C другой стороны, так как конус ℱ1− прямой, имеем P O1 ⊥ XY  , причём XO1 = 12KL  =1,YO1 =XY − XO1 = 17  . Отсюда

  2   2     2     2  (   2     2)  (   2     2)    2     2   2(    2   2)
17 − 1 =O1Y  − O1X =  O1Y + O1P  − O1X  + O1P  = PY − PX  = 18  1− ν − 3ν

         2(    2)
16⋅18= 18 1 − 4ν

    1
ν = 6

            AP               1
∠SAB  =arccosAS-= arccosν = arccos6

Итак, ℓ= 6a  , и из подобия имеем

-2 = KL-= CX-= 1− XP-= 1− XY- =1− 18 =1− 3,
2a   AB   CP      CP      CS       ℓ     a

откуда a= 4  и ℓ= 24  . Пусть P O1  пересекает SC  в точке H  . Тогда PH  — высота треугольника SCP  , причём (поскольку XY ∥CS  ) CCHS-= XXOY1-= 118-  . Значит, CH = S1C8 = 43  . Поскольку O2Q⊥ XY,HO1O2Q  — прямоугольник, так что HQ = O1O2 = 16  . Отсюда CQ = CH + HQ = 532  .

Ответ:

а) ∠SAB = arccos1;
            6

б)     52
CQ=  3

Ошибка.
Попробуйте повторить позже

Задача 10#43959

Дана усечённая пирамида ABCA  B C
     1 1 1  с боковыми рёбрами AA
   1  , BB
  1  , CC
   1  (ABC ∥A B C )
        1 1 1  , такая, что треугольник BB1C  — равносторонний. На ребре AA1  , перпендикулярном основанию ABC  пирамиды, лежит точка N  такая, что AN :NA1 = 1:2.  Сфера Ω  с радиусом √-
 5  проходит через вершины треугольника BB1C  и касается отрезка AA1  в точке N  .

(a) Найдите длину ребра BB1  .

(b) Пусть дополнительно известно, что             ∘ --
∠ABC  =arccos  25  . Найдите угол между прямой AA1  и плоскостью BB1C  , а также длину ребра A1B1.

Показать ответ и решение

PIC

Отметим точку E  в качестве вершины пирамиды, точку O  в качестве центра ω  , точку O1  в качестве центра описанной окружности треугольника BB1C  и F  в качестве середины BC  . Так как BB1C  равносторонний, то O1  это еще и центр пересечения медиан, а значит, B1F  проходит через O1  и FO1 :O1B1 = 1:2  и NO1∥ABC  . Так как ω  проходит через вершины треугольника BB1C  и касается отрезка AA1  в точке N  , то OO1⊥BCC1  и ON ⊥AA1  . Мы знаем, что AA1 ⊥ABC  и поэтому NO ∥ABC  . Получается, что мы знаем, что точка O  лежит на плоскости α  , проходящей через N  и параллельной ABC  , и лежит на прямой l  , перпендикулярной BB1C  и проходящей через O1  . Значит, либо l  принадлежит α  , но тогда FB1  перпендикулярна двум разным прямым параллельным ABC  (BC  и l  ) и тогда все три стороны перпендикулярны основанию, а такого не бывает, либо l  и α  пересекаются в одной точке и O1 =O  . Тогда BO =BO1 = √5  и BB1 = √15  (по формуле для равностороннего треугольника).

PIC

Спроецируем точки O  и B1  на плоскость ABC  . Тогда так как проекция A1  на ABC  это A  , то         ′
A1B1∥AB 1  и поэтому  ′
B ∈ AB  . Также можно заметить             ′  ′ ′
F O:OB1 = FO :O B1 = 1:2  .

Прямоугольные треугольники B1B′1B  и B1B′1C  равны по катету и гипотенузе, поэтому BB′1 =CB ′1  . Значит, высота в равнобедренном треугольнике BB ′1C  равна B ′1F  , так как F  середина BC  и равна              √--∘--  ∘--
BF |tgB ′1BF |= -125 32 =  458  . Тогда

                                                     ∘--
                  ′          ′          (B′1F-)       -458-  1--
∠(AA1,BCB1)= ∠(B1B1,BCB1 )= ∠B1B1F =arcsin B1F  = arcsin √45 = √2
                                                      2

Значит, ∠(AA1,BCB1 )= π4  . Тогда            ∘ --
FB ′1 = F√B21=  485

Пусть T  — проекция O′ на AB  . Тогда O′T = O′B′cosB ′O ′T = 2B′Fcos1∠B ′O′C = 2B′FcosB ′BC = 2∘ 45∘-2= 1
        1    1     3 1   2   1     3 1     1    3  8   5  и       ∘----------- ∘ 3-
B1′T =  O′B′12− O ′T2 = 2  . С другой стороны, поскольку           √-
AO ′= NO =  5  , то     √----------
AT = AO ′2− O′T2 = 1  . Отсюда                         ∘ --
A1B1 =AB ′1 = AT +TB ′1 = 2+ 32  .

Ответ:

 (a)√15,

  π    ∘-3
(b)4,2+   2

Ошибка.
Попробуйте повторить позже

Задача 11#43960

Основание треугольной пирамиды ABCD  — правильный треугольник ABC.  Объём пирамиды равен 2√5
 3  , а её высота, проведённая из вершины D  , равна 3.  Точка M  — середина ребра CD.  Известно, что радиусы сфер, вписанных в пирамиды ABCM  и ABDM  , равны между собой.

(a) Найдите возможные значения угла между гранями пирамиды при ребре AB.

(b) Найдите все возможные значения длины ребра CD  , если дополнительно известно, что грани BCD  и ABC  взаимно перпендикулярны.

Источники: Физтех-2017, 11.7 (см. olymp.mipt.ru)

Показать ответ и решение

Воспользуемся формулой радиуса вписанной сферы r= 3V
   S  , где V  — объём, а S  — площадь поверхности пирамиды. Объёмы пирамид ABCN  и ABDM  равны (грань ABM  общая, а вершины C  и D  равноудалены от плоскости ABM  ); кроме того SADM = SACM  и SBDM  =SBCM  (медиана делит площадь треугольника пополам). Значит, равенство сфер, вписанных в пирамиды ABCN  и ABDM  , эквивалентно условию SABD = SABC  или равенству высот, проведённых к стороне AB  в треугольниках ABD  и ABC  .

PIC

Пусть DH  высота пирамиды, а DK  высота в треугольнике ABC  . Объём пирамиды равен √253-  , а её высота из вершины D  равна 3, то есть DH  . Значит, площадь основания пирамиды равна 2√53  . Тогда сторона основания AB = 1√03  , а высота треугольника ABC  равна 5. Значит, DK  также равно 5. Из прямоугольного треугольника DHK  находим KH = √KH2-−-DH2-= 4  , т.е. точка H  находится на расстоянии 4 от прямой AB  (H  лежит на одной из двух прямых, параллельных AB  , на расстоянии 4 от неё). Тем самым, угол между гранями при ребре AB  равен arccos± 4
      5  .

PIC

Из условия, что грани BCD  и ABC  взаимно перпендикулярны, следует, что H  лежит на BC  . Так как KH = 4  , то       8
HB = √3  . Значит CH = CB ±HB  = 2√3  или 1√83  . Тогда       ---------- ∘ --
CD = √CH2 +HD2  =  331  или   --
3√ 13  .

Ответ:

 (a) arccos±4
         5

  √3√1
(b)  3  или  √--
3 13

Ошибка.
Попробуйте повторить позже

Задача 12#105348

Рассматриваются четырёхугольные пирамиды MABCD  со следующими свойствами: основание пирамиды — выпуклый четырёхугольник ABCD,  в котором AB = BC = 1,  CD =DA = 2,  а каждая из плоскостей боковых граней MAB,  MBC,  MCD,  MDA  составляет угол   ∘
45 с плоскостью основания.

а) Найдите объём такой пирамиды, если её высота, опущенная из вершины M,  равна 9
5.

б) При какой длине высоты объём рассматриваемых пирамид максимален и чему равен этот объём?

Показать ответ и решение

PIC

Пусть MH  — высота пирамиды, (MH  = h),  P  — проекция M  на прямую AB  . Тогда MHP  — прямоугольный треугольник с углом ∠MP H = 45∘ , откуда HP = h⋅ctg45∘ = h  . Аналогично доказывается, что точка H  удалена от каждой из прямых BC, CD,DA  на расстояние r= h  (иначе говоря, окружность радиуса r  с центром H  касается прямых AB,BC, CD,DA )  .

Треугольники BAD  и BCD  равны по трем сторонам, поэтому четырёхугольник ABCD  симметричен относительно диагонали BD  . Его площадь S  равна 2SBAD = AB ⋅AD sin∠BAD  , поэтому S ≤ AB ⋅AD = 2  . Равенство достигается, когда ∠BAD  = 90∘ , поэтому Smax = 2  .

Точка H  лежит на внутренней или внешней биссектрисе каждого из углов четырехугольника ABCD.BD  является внутренней биссектрисой углов B  и D  . Внешние биссектрисы углов B  и D  параллельны, поэтому H  обязана лежать на BD  .

PIC

Обозначим через I  и J  точки пересечения внутренней и внешней биссектрис угла A  с прямой BD  . Тогда I  — центр вписанной окружности четырёхугольника ABCD  (пусть ее радиус равен r1  ); J  центр окружности, касающейся продолжений сторон четырехугольника ABCD  (вневписанной окружности, пусть ее радиус равен r2  ). Площадь четырёхугольника, в который вписана окружность может быть задана формулой

   (AB +BC + CD + DA)r
S =---------2---------1,

откуда r1 = S3  . Также

S = SADJ + SCDJ − SABJ − SBCJ = (AD-+-CD-−-AB−-BC-)r2,
                                      2

откуда r2 = S  .

Пирамида удовлетворяет условию задачи тогда и только тогда, когда (1) высота проходит через центр вписанной в основание окружности (т.е. H = I  ) и при этом её длина равна h= r1 = S
       3  или (2) высота проходит через центр вневписанной окружности (т.е. H = J  ) и h= r2 = S  .

a) При h= 9
   5  первый случай невозможен ( S = 3r1 = 3h = 27-> 2
            5  ). Поэтому остаётся второй случай, и тогда S = r2 = h= 9
          5  . Объём равен V = Sh= 27
    3   25  .

б) Объём в первом и во втором случае равен

          2
V1 = Sh-= S
     3   9

V2 = Sh-= S2
     3   3

Наибольший объём

      S2max  4
Vmax = 3  = 3
Ответ:

а) 27
25

б) 4
3

Ошибка.
Попробуйте повторить позже

Задача 13#51631

Дана прямая треугольная призма ABCA  B C .
     1 1 1  Сфера с диаметром A B
 1 1  пересекает рёбра A C
 1 1  и B C
  1 1  соответственно в точках    T
    1  и L1,  отличных от вершин призмы. Отрезки BT1  и AL1  пересекаются в точке S,  и при этом AL1 =7,ST1 = 2.

(a) Найдите угол ST1A1  .

(b) Найдите отношение A1T1 :T1C1  .

(c) Пусть дополнительно известно, что AC = 5.  Найдите объём призмы.

Источники: Физтех, 11.7 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

(a) Точки T1  и L1  лежат на окружности с диаметром A1B1;  значит, ∠A1L1B1 = 90∘,∠A1T1B1 = 90∘ (т.е. A1L1  и B1T1− высоты треугольника A1B1C1).  Прямая B1T1  — это проекция прямой BT1  на плоскость основания, при этом B1T1 ⊥ A1C1.  Тогда по теореме о трёх перпендикулярах BT1 ⊥ A1C1,  т.e. ∠ST1A1 = 90∘.

(b) Поскольку прямые BT1  и AL1  пересекаются, то все четыре точки T1,L1,A  и B  лежат в одной плоскости (назовём её α  ). Значит, прямые AB  и T1L1  лежат в одной плоскости α,  а так как они не пересекаются (поскольку лежат в параллельных друг другу основаниях призмы), то AB ∥T1L1.  Значит, T1L1∥A1B1.  Трапеция A1T1L1B1  вписана в окружность, следовательно, она равнобокая, тогда углы при её основании A1B1  равны, и поэтому треугольник A1B1C1  равнобедренный (A1C1 =B1C1).

Треугольники T1L1S  и ABS  подобны по двум углам. Из равенства треугольников BB1T1  и AA1L1  следует, что AL1 = BT1,  поэтому оба треугольника T1L1S  и ABS  равнобедренные с основаниями T1L1  и AB  соответственно. Значит, T1L1 :A1B1 = T1L1 :AB =T1S :SB = T1S :(T1B− T1S)= T1S :(AL1 − T1S)= 2:5,  откуда A T   C A −T C   C A      A B      5     3
-T11C11 =-1-1T1C11-1= T11C11 − 1= T11L11 − 1= 2 − 1= 2

(c) Если AC = 5,  то                               ----------
C1T1 = 2,A1T1 =3,B1C1 = 5;B1T1 =∘ B1C2− C1T2= √21
                                 1     1  ;        ----------
BB1 = ∘ BT2− B1T2= 2√7
         1     1  . Значит, площадь основания призмы равна SA B C = 1⋅5⋅√21,
  1 1 1  2  объём призмы равен V = SA B C ⋅BB1 = 35√3-
      11 1  .

Ответ:

(a) 90∘,

(b) 3 :2,

(c) V = 35√3-

Ошибка.
Попробуйте повторить позже

Задача 14#100420

Дана правильная призма ABCDA   B C D
       1 1 1 1  с основанием ABCD.  Плоскости α  и β  перпендикулярны B D
  1  и проходят через вершины A  и D1  соответственно. Пусть F  и H  соответственно — точки пересечения плоскостей α  и β  с диагональю B1D  , при этом DF < DH.

(a) Найдите отношение B1H :DF.

(b) Пусть дополнительно известно, что некоторая сфера радиуса 3 касается всех боковых граней призмы, а также плоскостей α  и β.  Найдите отрезок B1D  и объём призмы ABCDA1B1C1D1.

Показать ответ и решение

(a) Из соображений симметрии (относительно плоскости BDD1B1  ) плоскость α  проходит через точку C  — и, значит, через центр O  грани ABCD  . Отрезки B1H  и DF  — проекции параллельных отрезков B1D1  и DO  на прямую B1D  , причём B1D1 =2DO  . Значит, B1H :DF = 2  .

(b) Поскольку сфера касается всех боковых граней призмы, её проекция на основание есть окружность, вписанная в это основание. Значит, AB = 2r= 6  . Кроме того, α  и β  — это две параллельные плоскости, касающиеся сферы, поэтому расстояние между ними равно диаметру сферы, то есть 6. Так как B1D⊥ α  , этим расстоянием является отрезок HF  , поэтому HF = 6  .

Обозначим B1D = d  . Поскольку D1H  — высота прямоугольного треугольника B1D1D  , то

B1H ⋅B1D = B1D2= 72
              1

и, следовательно, B1H = 7d2  . Тогда

DF = 1B1H = 36-
     2      d

и

HF = B D− B H − DF =d− 72− 36
      1    1            d   d

Получаем уравнение

      108
6= d−  d

 2
d − 6d− 108= 0

d= 3+3√13,  поскольку d >0  .

Наконец, высота призмы равна

   ∘ ---2-----2  ∘------√-------  ∘ ----√--
h =  B1D  − BD =  9(14+2  13)− 72= 3 6+ 2 13

А объём призмы равен

      2      ∘ ---√---
V = AB ⋅h= 108  6+ 2 13
Ответ:

(a) 2:1

(b)           √--      ∘ ---√---
B1D = 3+ 3 13,V = 108  6+ 2 13

Ошибка.
Попробуйте повторить позже

Задача 15#51630

В основании треугольной пирамиды SABC  лежит прямоугольный треугольник ABC  с гипотенузой BC = 2√3  . Сфера ω  касается плоскости основания пирамиды и касается всех трёх её боковых рёбер в их серединах. Пусть Ω  — сфера, описанная около пирамиды SABC.

(a) Найдите расстояние между центрами сфер ω  и Ω  .

(b) Найдите отношение радиусов сфер ω  и Ω  .

(c) Пусть дополнительно известно, что ∠SAB = arccos1.
            4  Найдите объём пирамиды SABC  .

Показать ответ и решение

PIC

Пусть O  — центр сферы ω;K,L,M  — основания перпендикуляров, опущенных из точки O  на ребра AS,BS,CS  соответственно; SH  — высота пирамиды SABC; r  и R  — радиусы сфер ω  и Ω  соответственно.

a) Поскольку точка O  лежит на серединном перпендикуляре к отрезку AS,  она равноудалена от концов этого отрезка, т.е. OA =OS.  Аналогично OB =OS  и OC =OS.  Значит, OA = OB =OC = OS,  поэтому точка O  является центром сферы Ω  . Следовательно, расстояние между центрами сфер равно нулю.

b) Из равенства прямоугольных треугольников SOK  , SOL  и SOM  (OK = OL = OM = r,OS  — общая сторона) следует, что SK = SL =SM.  Поскольку точки K, L,M  — это середины боковых рёбер пирамиды, отсюда получаем, что боковые рёбра равны между собой. Тогда высота пирамиды проходит через центр окружности, описанной около основания (действительно, ΔSHA  =ΔSHB  = ΔSHC  по катету и гипотенузе, откуда AH = BH = CH  ). Но в пирамиде OABC  боковые рёбра OA, OB,OC  также равны между собой как радиусы сферы Ω  ; значит, и её высота, проведённая из вершины O  проходит через центр окружности, описанной около основания. Таким образом, высота пирамиды SH  проходит через точку O.  Кроме того, точка H  является центром окружности, описанной около основания. Поскольку треугольник ABC  прямоугольный, H  — это середина гипотенузы BC.  Так как отрезок OH  перпендикулярен плоскости основания, он равен радиусу r  сферы ω.

Для нахождения соотношения между радиусами рассмотрим прямоугольный треугольник SHC.  Точка M  — середина гипотенузы SC,  на катете SH  находится точка O,  причём SO = CO =R  , OH = OM = r.  Треугольники CHO  , CMO  и SMO  равны по катету и гипотенузе, следовательно, CH = CM  =SM.  Значит, CH = 1SM, ∠HSC = 30∘.
     2  Тогда из треугольника SOM  находим, что r:R = 1:2.

c) SC = 2CH = BC =2√3,  поэтому треугольник SBC  — равносторонний, SH = SB ⋅ √3= 3.
         2  B равнобедренном треугольнике SAB  известны боковые стороны          √ -
SB =SA = 2 3  и угол при основании            1
∠SAB = arccos4.  Отсюда находим, что                   √-
AB = 2SA ⋅cos∠SAB =  3  . По теореме Пифагора для треугольника ABC  находим, что AC =3,  поэтому       1    √-
SABC =2 ⋅3⋅ 3;  объём пирамиды V  равен 1    3√3-  3√3
3 ⋅3⋅ 2 =  2 .

Ответ:

(a) 0

(b) 1 :2

(c) 3√3
 2

Ошибка.
Попробуйте повторить позже

Задача 16#51629

На ребре CC
   1  правильной треугольной призмы ABCA  B C
     1 1 1  выбрана точка M  так, что центр сферы, описанной около пирамиды MAA1B1B,  лежит в грани AA1B1B.  Известно, что радиус сферы, описанной около пирамиды MABC,  равен 5,  а ребро основания призмы равно  √-
4 3  . Найдите:

(a) отношение объёма пирамиды MAA1B1B  к объёму призмы

(b) длину отрезка MC

(c) площадь полной поверхности призмы

Источники: Физтех-2012, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

Введём обозначения: K  — центр грани ABC; L− середина ребра AB; Q  — центр сферы, описанной около пирамиды MAA1B1B  (т.е. Q  — центр грани AA1B1B  ); O  — центр сферы, описанной около пирамиды MABC  .

(a) -VMABC---= 1 ⋅ MC-;-VMA1B1C1-= 1⋅ MC1-⇒ VMABC+VMA1B1C1 = 1⋅ MC+MC1 = 1,
VABCA1B1C1  3  CC1  VABCA1B1C1   3 CC1      VABCA1B1C1     3   CC1     3  3начит, объём пирамиды MAA1B1B  составляет две трети объёма призмы.

(b) Сторона равностороннего треугольника ABC  равна  √-
4 3  , следовательно,       √-  1√-
CK  =4 3 ⋅ 3 = 4  , как радиус описанной окружности.

Рассмотрим прямоугольную трапецию CKOM  . В ней известны стороны CK  =4,OM = 5  и диагональ OC = 5.  По теореме Пифагора из треугольника OCK  находим, что OK = 3.  Опустим из точки O  перпендикуляр OH  на отрезок MC  . Тогда MC  =2 ⋅CH  =2⋅KO = 6.

(c) Обозначим BB1 =h.  Тогда

           ∘ ------                        ∘-----------
    h        h2         ∘ --2-----------2   ( h   )2
QL = 2,QB =   4 + 12,QM  =  CL + (QL− MC ) =    2 − 6 + 36

Отрезки QB  и QM  равны как радиусы сферы. Решая получающееся уравнение, находим, что h = 10.  Тогда площадь поверхности призмы       √-   √-         √-    √ -
S = 2⋅43⋅(4 3)2 +3⋅10⋅4 3= 144 3.

Ответ:

(a) 2:3

(b) 6

(c) 144√3

Ошибка.
Попробуйте повторить позже

Задача 17#51628

Основанием треугольной пирамиды SABC  является правильный треугольник ABC  со стороной 8.  Боковое ребро SC  перпендикулярно основанию и имеет длину 15.  Сфера, центр O  которой лежит в плоскости SBC,  касается рёбер SA  , AB  и AC  в точках A1,B1  и C1  соответственно. Найдите AA1,  расстояние от точки O  до ребра BC,  и радиус сферы.

Источники: Физтех-2010, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

Обозначим AB = 2b =8,SC =h =15.  Пусть E  и K− проекции точки O  на прямые BC  и SC  соответственно. Пусть OE = x,OA1 = OB1 =OC1 = R  — радиус сферы.

PIC

Так как OE  — перпендикуляр к плоскости ABC  , а OB1 ⊥ AB,  то по теореме о трёх перпендикулярах получаем B1E  ⊥AB  . Аналогично C1E ⊥ AC.  Из равенства прямоугольных треугольников OB1E  и OC1E  следует, что B1E = C1E.  Из равенства прямоугольных треугольников BB1E  и CC1E (  так как ∠B = ∠C = π3) получаем, что BE = CE =b =4.  Тогда                                 √ -
B1B = b2 = C1C,C1A= B1A = 32b,B1E = b23.  Кроме того, из равенств отрезков касательных, проведённых к сфере из точки A,  следует, что AA1 = AB1 = 32b= 6  Для нахождения x  и R  выразим SO  из треугольников SKO  и SOA1.  Так как OK = CE =b  и SK = h− x,  то SO2 =(h− x)2 +b2 = OA21+ SA21,  где OA21 = R2 = OE2+ B1E2 =x2+ 34b2,SA1 = SA− AA1 = √h2-+4b2− 32b.  Следовательно,                     (           )
(h− x)2 +b2 = x2+ 34b2+ √h2-+4b2− 32b,  откуда получаем

x2 +h2− 2xh+ b2 = x2+ 3b2+ h2+4b2+ 9b2− 3b∘h2-+4b2
                   4            4

T. e. x = 3b(√h2+-4b2− 2b)= 12(√15⋅15+-64− 8)= 2(17− 8)= 18.
    2h                30               5         5  Тогда R =∘x2-+-3b2-=∘ 18⋅18+-3⋅16= 4√39
         4      25   4      5  .

Ответ:

 AA = 6,ρ= 18,R= 4√39
   1       5      5

Ошибка.
Попробуйте повторить позже

Задача 18#69438

В правильной четырёхугольной пирамиде SABCD  сторона основания ABCD  равна √2  , высота SO  равна 2.  Точка K  лежит на высоте SO  , причём KS :KO = 1:3  . Через точку K  проведена плоскость Π  , перпендикулярная прямой SA  . Найдите площадь сечения пирамиды плоскостью Π  , расстояние от точки D  до плоскости Π  и угол между плоскостью Π  и прямой SD  .

Показать ответ и решение

Имеем AO =1,AS =√5  . Пусть 2α =∠ASC, 2β = ∠ASD  . Тогда

     1       -2-      1--      4        3
tgα= 2,cosα= √5,sinα = √5,sin2α= 5,cos2α = 5

sinβ = √1-,cosβ = √-3-,sin 2β = 3,cos2β = 4,tg2β = 3
       10        10       5       5       4

Пусть плоскость П пересекается с прямыми AS,CS  и DS  в точках M, N  и P  соответственно.

PIC

В плоскости ASC  из прямоугольного △KSM  имеем

               1
SM  =SK cosα= √5-

Далее из прямоугольного △NMS  имеем

      SM    √5                 4
SN = cos2α-= -3 ,MN =SN sin2α = 3√5-

В плоскости ASD  из прямоугольного △P MS  имеем

                              √-
MP  = SM tg2β = √3-,SP =-SM--= -5-
               4 5     cos2β    4

Так как SM  перпендикулярно плоскости Π  , то углом между прямой SD  и плоскостью Π  является

∠SP M = π− 2β = arcsin 4
        2           5

Так как

              √-  √5-  3√5
DP = SD − SP = 5− -4-= -4-,

то расстояние от точки D  до плоскости Π  равно

DP sin∠SP M = 3√--
              5

В плоскости CDS  из △PNS  по теореме косинусов находим

PN2 = 5-+ 5− 5 ⋅ 4=-29-
      16  9  6  5  9⋅16

Рассмотрим △MP N  . Пусть ∠PMN  = φ  . Тогда по теореме косинусов получаем

-29- = -9--+ 16-− 2cosφ
9 ⋅16   16 ⋅5   9⋅5  5

145-  9⋅9+16⋅16-
9⋅16 =    9⋅16   − 2cosφ

      81+256− 145    192   2
cosφ = ---18⋅16----= 18⋅16 = 3

Следовательно,       √5
sinφ = 3-  , и искомая площадь сечения равна

              -1-
MP ⋅MN ⋅sin φ= 3√5
Ответ:

Площадь равна 1√--
35

Расстояние равно √3-
  5

Угол равен     4
arcsin5

Ошибка.
Попробуйте повторить позже

Задача 19#70628

В пирамиде SABC  каждый из углов ASB  и ASC  равен arccos√1
      5  , угол BSC  прямой, ребро SB  равно a  . Центр сферы, вписанной в пирамиду SABC  , лежит на высоте SD  . Найти SA,SD  и радиус сферы, вписанной в пирамиду SABC.

Источники: Вступительные в МФТИ - 2006

Показать ответ и решение

PIC

Так как центр вписанной в пирамиду сферы лежит на её высоте SD  , то SD  образует равные углы с плоскостями ASB, ASC, BSC  . Кроме того, из симметрии следует, что SB =SC = a, AB =AC  .

Проведём плоскость через SD  перпендикулярно AB  . Пусть эта плоскость пересекает AB  в точке C1  . Аналогично построим точки B1,A1  . Заметим, что треугольники SDC1, SDB1, SDA1  равны, так как они прямоугольные, имеют общий катет SD  , а углы DSC1, DSB1, DSA1  равны, как углы между SD  и плоскостями ASB, ASC, BSC  . Тогда SC1 =SB1 = SA1  и эти отрезки являются высотами боковых граней пирамиды. Из прямоугольного треугольника SBC  находим его высоту SA1 = a√2  .

Рассмотрим треугольник ASB  . Пусть SA = b, ∠ASB =α  . Тогда по теореме косинусов

                      ∘ ------------
    ∘ -2--2----------    2  2  -2-
AB =  a + b− 2abcos(α)=  a + b− √5 ab
(1)

Так как SC1 =SA1 = a√2  и AB ⋅SC1 = SA⋅SB ⋅sin(α),  то

   ∘------------
√a- a2+ b2− 2√-ab= ab 2√- =⇒   a2+b2− √2ab= 8b2
  2          5       5               5    5

Полагая a
 b = x,  получаем уравнение

    2    3
x2− √5x− 5 =0

Откуда

    1   ∘1---3   3              a   a√5
x= √5-+  5 + 5 = √5-;    SA= b= x = -3--

Тогда из (1)  получаем       √-
AB = 2a32-  . Так как SB =SC  , то A1  является серединой BC,  а из равенства AB = BC  следует, что  AA1  является высотой треугольника ABC,  причём       ∘-----------
AA  =  AB2 − ( BC)2 = a∘-8−-1= a∘ 7
   1          2        9  2  3  2  .

Пусть r  — радиус вписанной окружности треугольника ABC  .

Тогда r =DA  = DB  = DC
      1     1    1  . Из равенства (AB +AC + BC)r= AA  ⋅BC :
                  1

( 4a√2   √-)    a∘-7  √-                a
  -3--+ a 2  r= 3  2 ⋅a 2 =⇒   r= DA1 = √14

Тогда

                    ------   --
     ∘---2----2   ∘ 1  1-   ∘ 3
SD =  SA 1− DA 1 = a 2 − 14 = a 7

Рассмотрим треугольник SDA1  . Отразив точку A1  симметрично SD,  получим точку A2  . Пусть радиус сферы равен R  . Заметим, что он равен радиусу окружности, вписанной в треугольник A2SA1  . Тогда (2r +2SA1)R= 2r⋅SD :

( ∘ --  √-)     ∘--  ∘--            √-
 a  2+ a 2 R = a  2⋅a 3   =⇒  R = -a-3√-
    7             7   7           7+  7
Ответ:

 SA = a√5,SD = a√21,R= a√3(7−√7)
      3        7        42

Ошибка.
Попробуйте повторить позже

Задача 20#80061

В кубе ABCDA  B C D
      1 1 1 1  с ребром a  через точку A  параллельно прямой BD  проведена плоскость P  , образующая с прямой AB  угол, равный     -1√-
arcsin2 2  . Найдите площадь сечения куба плоскостью P  и радиус шара, касающегося плоскости P  и граней ABCD  , BCC1B1  и DCC1D1  .

Показать ответ и решение

Плоскость P  пересечет грань BB D D
  1 1  куба по прямой EF ∥BD,  где E ∈DD  ,a
      1  ребро CC
  1  — в некоторой точке K.  Пусть Q  — середина BD, M  и N − основания перпендикуляров, опущенных соответственно из точек D  и Q  на плоскость P.  Тогда DM  = QN,  так как BD ∥P,  и N ∈ AK.

По условию             √2
∠DAM  =arcsin 4 ,AD = a,  откуда находим         √2  a√2
DM = AD 4 =  4  =QN.  Из треугольника AQN,  в котором      a√2
AQ =  2       AQ-
QN =  2 ,  находим        π
∠QAN = 6,  и поэтому

          1   2√6-
AK  =AC cosπ= -3- a
           6

Пусть S  — площадь сечения куба плоскостью P,  тогда S = 12AK ⋅EF,  где EF =BD = a√2,  и поэтому      -
S = 2√33 a2

Теперь найдём радиус R  вписанного шара. Заметим, что центр O  шара лежит на биссектрисе угла KAC  , а проекция L  точки O  на грань ABCD  принадлежат AC.  Из треугольника AOL,  в котором ∠OAL  = 1∠KAC  = π-,OL = R,
        2       12  находим

AL =R ctg π-,
         12

где

   π-  1+-cosπ6     √-
ctg 12 = sinπ6  = 2+  3

Так как

      √-
LC = R 2,AC = AL+ LC,

тo

a√2= R (ctg π-+ √2)
          12

_____________________________________________________________________________________

Замечание.

Искомый радиус можно было также найти, заметив что он равен радиусу шара, вписанного в треугольную пирамиду KCE  F,
    1 1  где   E
   1  — точка пересечения прямых KE  и CD, F1− точка пересечения прямых KF  и CB,  используя формулу    3V
R= Sn  где V  — объем пирамиды KCE1F1, Sn  — её полная поверхность.

Ответ:

 2a2---a√2----
 √3;2+ √2+ √3

Рулетка
Вы можете получить скидку в рулетке!