Тема . Физтех и вступительные по математике в МФТИ

Стереометрия на Физтехе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех и вступительные по математике в мфти
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80774

В основании призмы лежит равносторонний треугольник площади 1. Площади её боковых граней равны 3, 3 и 2. Найдите объём призмы.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

Если бы призма была прямая, то площади боковых граней были бы равны. Значит, призма наклонная.

Обозначим призму ABCA1B1C1,  площади из условия SAA1B1B = SAA1C1C = 3.

Пусть A1K, A1M  — высоты параллелограммов AA1B1B  и AA1C1C.  Тогда A1K = A1M,  т.к. площади равны, а также равны их основания, так как равносторонний треугольник.

Пусть  ′
A — проекция A1  на плоскость ABC.  Тогда  ′     ′
A K = AM,  следовательно, точка равноудалена от прямых AB  и AC.

(a) Рассмотрим случай, когда  ′
A принадлежит биссектрисе AL  угла ∠ABC.  AL  — высота, медиана и биссектриса в равностороннем треугольнике.

PIC

AL ⊥ BC   }                ′
A1A′ ⊥ BC    =⇒   BC ⊥(AA1A )  =⇒  BC ⊥ AA1  =⇒   BC ⊥ BB1

Тогда получаем, что BB1C1C  — прямоугольник. Пусть сторона треугольника ABC  равна a.  Посчитаем площадь прямоугольника и параллелограмма.

S1 =a ⋅AA1, S2 = a⋅A1K

2 =a ⋅AA1, 3= a⋅A1K

Но A1K < AA1,  тогда

3= a⋅A1K < a⋅AA1 = 2

получаем противоречие.

(b) Рассмотрим случай, когда A′ принадлежит внешней биссектрисе AL  угла ∠ABC.

PIC

AA′ ∥BC  )|}
A1A∥BB1     =⇒   (AA1A′) ∥(BB1C )
AA′ ∥BC  |)

Но (AA1A′)⊥(ABC ),  следовательно, (BB1C)⊥ (ABC ),  откуда следует, что высота CH1  параллелограмма CC1B1B  совпадает с высотой призмы (C1H = A1A′).  В итоге

V = SABC ⋅CH1 = 4√3
Ответ:

√43-

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!