Тождественные преобразования, уравнения и системы на Высшей пробе
Ошибка.
Попробуйте повторить позже
На доске написана система из различных уравнений с
неизвестными
Каждое уравнение имеет вид
где
(сумма трех различных неизвестных равна нулю). Могло ли оказаться так, что у системы бесконечно много
решений?
Источники:
Подсказка 1
Эх, вот бы сразу знать ответ, чтобы не пришлось идти не в ту сторону.. Если такого быть не могло, то должно быть красивое доказательство (хотя бы какое-то!), если может, то нужен один пример. С чего легче начать?
Подсказка 2
Давайте попробуем с примера. Если решений бесконечно много, то у них есть какой-то общий вид, причем чем меньше будет различных значений у переменных, тем больше равенств нулю мы сможем составить (если все 6 неизвестных разные, то составить 12 уравнений будет сложнее, чем если у нас будут всего 1-3 различных значений на 6 переменных).
Подсказка 3
Очевидно, что все переменные не могут быть равны между собой (ведь тогда единственным решением будет (0,0,0,0,0,0), а не бесконечное количество, противоречие). Сможем ли составить пример с двумя различными значениями? Получится ли записать такое решение в общем виде?
Подсказка 4
Ответы на предыдущие вопросы положительны. В данной задаче возможны различные примеры, осталось удостовериться, что наберется на найденный набор 12 уравнений, о которых говорится в условии!
Да, могло. Приведем пример. Пусть — произвольное действительное число, положим, чтобы выполнялись равенства:
Тогда при сложении одного слагаемого, равного и двух слагаемых, равных
сумма будет равна нулю. Количество таких сумм
составляет:
Выпишем данную систему явно:
Могло
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!