Тема . Высшая проба

Тождественные преобразования, уравнения и системы на Высшей пробе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела высшая проба
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#82703

Про вещественные числа a,b  и c  известно, что

abc+a+ b+ c= 10  и  ab+ bc+ac= 9

Для каких чисел x  можно утверждать, что хотя бы одно из чисел a,b,c  равно x?  (Найдите все такие числа x  и докажите, что других нет.)

Показать ответ и решение

Из условия имеем систему

{ abc +a+ b+ c= 10
  ab+bc+ ac= 9

Из первого уравнения системы вычтем второе, получится

abc+ a+ b+c− ab− bc− ac= 1

Заметим, что

(a− 1)(b− 1)(c− 1)= abc +a+ b+ c− ab− bc− ac− 1

Тогда полученное выше уравнение эквивалентно

(a − 1)(b− 1)(c− 1)=0

Таким образом, хотя бы одно из чисел a,b,c  равно 1.  Значит, x= 1  нам подходит. Докажем, что это значение x  единственно. Предположим, что существует некоторое x⁄= 1  такое, что хотя бы одно чисел a,b,c  равно x.

Для начала подставим, например, a= 1  и получим

{ bc+ 1+ b+c= 10
  b+ bc+c =9

В системе у нас два одинаковых уравнения, поэтому можно оставить только одно:

bc+ b+ c= 9

Подбором находим два решения этого уравнения. Например, b=2,  c= 7
   3  и b= 1,  c= 4.  По предположению в разных парах (b,c)  должно быть повторяющееся число. Но его нет, поэтому получено противоречие.

Таким образом, для x⁄= 1  нельзя утверждать, что хотя бы одно из чисел равно x.

Ответ:

только для x= 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!