Тема Высшая проба

Стереометрия на Высшей пробе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела высшая проба
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#80743

Сфера касается всех рёбер пирамиды, в основании которой лежит выпуклый 2024-угольник. Покрасим в шахматном порядке углы между последовательными рёбрами при вершине вне многоугольника в синий и красный цвета. Докажите, что произведение синусов половинок синих углов равно произведению синусов половинок красных.

Источники: Высшая проба - 2024, 11.6 (см. olymp.hse.ru)

Показать доказательство

Пусть в основании пирамиды лежит 2024-угольник A ...A
 1    2024  , точка O  — вершина пирамиды. Пусть для всех i∈ {1,2,...,2024} , сфера касается ребер OAi  в точке Bi  , а ребер AiAi+1  в точке Ci  (A2025 = A1  ).

PIC

Рассмотрим треугольник A1A2O  . Сечением сферы в его плоскости является вписанная в него окружность, которая касается его сторон в точках B1  , B2  , C1  . Пусть

A1B1 = A1C1 = x

A2B2 = A2C1 = y

OB1 = OB2 = z

∠A1OA2 =α

Из теоремы косинусов имеем

(x+ y)2 = (x+ z)2 +(z+ y)2− 2(x +z)(z +y)cosα

2xy = (x+ z)(y+ z)− (x+z)(z+y)cosα

1−-cosα-= ----xy----
   2     (x+z)(z+y)

1−-cosα-= A1B1-⋅ A2B2
   2     OA1   OA2

Как известно,

1−-cosα-= sin2 α
   2        2

По условию достаточно показать, что произведения квадратов половинных синих и половинных красных углов равны. Но из равенства выше каждое из таких произведений равно произведению отношений AiBi
OAi  для всех i∈ {1,2,...,2024} , что доказывает исходное равенство.

Рулетка
Вы можете получить скидку в рулетке!