Тема . ММО (Московская математическая олимпиада)

Теория чисел на ММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ммо (московская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#124035

Приведите пример числа, делящегося на 2020,  в котором каждая из десяти цифр встречается одинаковое количество раз.

Источники: ММО - 2020, первый день, 11.1 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

В этой задаче достаточно привести хотя бы один пример и обосновать его корректность. Попробуем подойти к такому примеру! Первым шагом нужно понять, а на что должно делиться число. Ага, сразу можем назвать последнюю цифру числа, уже что-то. Сможем привести пример, где все цифры встречаются только один раз?

Подсказка 2

Обратим внимание на 101. Нам нужен просто пример (необязательно наименьшее число), надо взглянуть на числа, которые делятся на 101. У многих из них повторяются цифры (2020, 2121, 3030, 4343 и др), а ведь нам как раз нужен пример, где всех цифр одинаковое количество!

Подсказка 3

Мы на финишной прямой! Осталось только собрать такой пример (мы уже поняли, что каждой цифры должно быть по две), осталось не забыть, что число должно не только оканчиваться на ноль, но и делиться на 4

Показать ответ и решение

Рассмотрим число

98987676545431312020

(существуют и другие примеры).

Поскольку 2020 =4 ⋅5 ⋅101,  число делится на 2020,  если оно делится на 4,  5  и 101.  Приведённое число оканчивается на 20,  следовательно, делится на 4  и 5.  Числа вида abab  равны 101⋅ab.  А поскольку приведённое число раскладывается в сумму чисел вида abab⋅10k,  оно делится на 101.

Ответ:

 98987676545431312020

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!