Тема . ММО (Московская математическая олимпиада)

Теория чисел на ММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ммо (московская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92164

Верхней целой частью числа x  называют наименьшее целое число, большее или равное x  . Существует ли такое число A  , что для любого натурального n  расстояние от верхней целой части   n
A  до ближайшего квадрата натурального числа всегда равно 2 ?

Источники: ММО - 2021, первый день, 11.6 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Есть два возможных ответа — да или нет. Если нет, то нужно доказывать, что абсолютно для любого числа в последовательность {A^i} найдется не подходящее число, что кажется очень непростой задачей. Тогда будем доказывать, что ответ «да». Если мы хотим, чтобы верхняя целая часть Aⁿ отличалось от ближайшего натурального квадрата на 2, то хотелось бы понять, чему равна эта верхняя целая часть. Вернее, что нам было бы удобнее взять за верхнюю целую часть, чтобы она отличалась от какого-то квадрата на 2? А если вспомнить как возводится число вида t+1/t в квадрат?

Подсказка 2

Хотелось бы сделать так, чтобы число вида Aⁿ + 1/Aⁿ было бы целым и A было некоторым квадратом, чтобы как раз получить t^2n + 1/(t^2n) = (tⁿ + 1/tⁿ)²-2. Осталось только понять, чему должно быть равно t, чтобы каждое выражение вида Aⁿ + 1/Aⁿ при A = t², было бы целым. Здесь вас на поиск подходящего t может натолкнуть либо мысль о процессе построения бесконечных цепных дробей, либо же тот факт, что число вида (a+b√c)^k, где a, b, k - целые, это выражение вида t+l√c. Заметьте, это верно и для отрицательных k.

Подсказка 3

Да, можно просто сказать, что t — корень некоторого уравнения с целыми коэффициентами и отрицательным коэффициентом при x, ведь тогда t+1/t = c, где с — целая положительная константа. Тогда, по модулю факта про возведение таких иррациональностей в степень можно сказать, что задача решена, поскольку мы нашли такое t, что любое выражение вида t^k + 1/t^k — целое, а значит, мы нашли подходящее А.

Показать ответ и решение

Пусть t  — больший корень многочлена x2− 10x+ 1  , тогда t+ 1 =10
  t  .

Докажем по индукции, что число  n  1-
t + tn  целое при любом целом неотрицательном n  .

Действительно, это верно при n = 0,1  . Кроме того,

n+1   1    ( n  1 )(   1)  ( n−1   1  )
t  + tn+1 = t + tn-  t+ t  − t   + tn−1- ,

что позволяет проделать шаг индукции.

Положим A = t2  , тогда

         (      )2
An + 1-=  tn+ -1  − 2
     An       tn

-1-
An <1

Значит,  n  -1
A + An  и есть верхняя целая часть  n
A  , а ближайший к ней квадрат целого числа равен (n  -1)2
 t+ tn  .

Ответ: да

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!