Алгебраические текстовые задачи на Курчатове
Ошибка.
Попробуйте повторить позже
В первой четверти координатной плоскости отметили две точки и
с целочисленными координатами. Оказалось, что
, где
— начало координат. Докажите, что хотя бы одна из четырёх координат точек
и
— чётное
число.
Источники:
Пусть точка имеет целочисленные координаты
, а точка
—
. Запишем скалярное произведение векторов
и
двумя способами: через координаты и через угол между ними.
Предположим, все числа нечётны, тогда все выражения в скобках являются чётными числами. Квадрат любого нечётного числа
даёт остаток 1 при делении на 4 (поскольку
), поэтому каждая из скобок в правой части является чётным числом,
не делящимся на 4 . Получаем противоречие с тем, что левая часть равенства делится на
, а правая на 8 не
делится.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!