Планиметрия на Курчатове
Ошибка.
Попробуйте повторить позже
– вписанный четырёхугольник,
На сторонах
и
отмечены точки
и
так, что
и
– середина
Докажите, что угол
– прямой.
Удвоим за точку
и
за точку
и получим
и
Тогда
и
— средние линии в треугольниках
и
Значит, достаточно доказать, что
и
перпендикулярны.
Заметим, что и
Отсюда треугольники
и
равны и треугольники
и
равны.
Тогда получается, что и
Это значит, что биссектрисы в треугольниках
и
также являются и
высотами. Мы хотим доказать, что
и
перпендикулярны. Это равносильно тому, чтобы перпендикуляры к этим прямым были
перпендикулярны, ведь угол между прямыми равен углу между перпендикулярами к ним.
Мы уже заметили, что биссектрисы в треугольниках и
также являются высотами, так значит, нам нужно показать, что
угол между биссектрисами является прямым. Давайте его посчитаем:
Заметим, что поэтому посчитанный выше угол равен
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!