Планиметрия на Курчатове
Ошибка.
Попробуйте повторить позже
Высоты и
параллелограмма
пересекаются в точке
a) Докажите , что прямые и
перпендикулярны;
б) Найдите длину диагонали , если
Замечание. Пункт а) выполнен не во всех случаях.
Источники:
Подсказка 1
Давайте заметим, что в условии не указано, на какие стороны опущены высоты. Значит, возможно несколько вариантов. Рассмотрите их. На всех ли картинках действительно будет выполняться эта перпендикулярность?
Подсказка 2
Давайте во втором пункте сначала рассмотрим случай, когда высоты BE и DK опущены на AD и AB. Мы хотим связать BD с KE и CH. Это совсем нетрудно сделать, если вспомнить про наличие подобных треугольников, связанных с ортоцентром, и теорему синусов.
Подсказка 3:
Давайте обозначим ∠BAD через γ. Треугольники △AEK и △ABD подобны. А знаете, с каким коэффициентом? Теорему синусов же стоит применять где-то в окружности (CBHD), там тоже фигурирует угол γ.
Подсказка 4:
Во втором случае ситуация иная. Можно сразу вычислить sin(γ), если поработать с окружностью (CKHE). Если дальше вспомнить про подобие, то задача решится)
а) Докажем, что в общем случае это неверно. В условии не указаны стороны, на которые опускаются высоты и
а значит,
возможны два варианта: либо точки
и
лежат соответственно на сторонах
и
либо соответственно на сторонах
и
Приведём пример параллелограмма для второго случая, в котором утверждение задачи неверно — пусть
Тогда вершина
совпадает с точками
и
а точка
является серединой
Очевидно, что тогда угол между
и
равен
и они не перпендикулярны.
Замечание. В случае, когда высоты и
опущены на стороны
и
действительно, всегда будет перпендикулярность
между прямыми
и
б) Случай Рассмотрим случай, когда высоты
и
опущены на стороны
и
Пусть Треугольники
и
подобны (их углы равны), следовательно,
Для треугольника вписанного в окружность с диаметром
верна теорема синусов:
Подставляя известные значения и
получаем:
Заменяя и подставляя все в выражение тригонометрического тождества, получаем уравнение:
Полученное квадратное уравнение на не имеет решений, так как его дискриминант меньше нуля. Значит, этот случай
невозможен.
Случай Рассмотрим случай, когда высоты
и
опущены на стороны
и
Для треугольника вписанного в окружность с диаметром
верна теорема синусов:
Таким образом,
Пусть Треугольники
и
подобны (их углы равны), следовательно,
Подставляя находим:
Ошибка.
Попробуйте повторить позже
Пункт а, подсказка 1
Пусть r — радиус окружности, K и L — точки касания окружности со сторонами AB и AD, сторона ромба равна a, PB = x, QD = y, PQ = z. Попробуйте выразить площадь треугольника CPQ через другие площади.
Пункт а, подсказка 2
S(CPQ) = S(CBPQD) - S(CBP) - S(CDQ).
Пункт a, подсказка 3
S(CPQ) = (a - (x + y - z)/2) ⋅ r. А чему равна сторона BK?
Пункт b, подсказка 1
S(CPQ) = (a - BK) ⋅ r = AK ⋅ r = S(CKA). Чему равен r?
Пункт b, подсказка 2
r = (a/2) ⋅ sin(α).
Ошибка.
Попробуйте повторить позже
Дан параллелограмм такой, что
Пусть
и
— середины сторон
и
соответственно. Оказалось, что точки
лежат на одной окружности. Найдите
Подсказка 1
Давайте попробуем понемногу раскручивать задачу. В планиметрии важно, что если есть какие-то не связанные между собой объекты, то надо их связать, потому что иначе работать с ними будет тяжело. Поэтому какой отрезок здесь у нас связан с картинкой минимально? Как можно это исправить?
Подсказка 2
Верно, PQ почти никак не причастен к конструкции. Давайте продлим его на такое же расстояние до пересечения с AD в точке T. Получим известную конструкцию с параллелограммом. Тогда наш искомый уголок можно перекинуть, и тогда нужно найти ∠ATP = ∠ADB. Какой ещё факт можно вспомнить теперь с точкой T, ещё учитывая вписанный четырёхугольник? А какие углы будут у него?
Подсказка 3
Да, мы ведь можем записать теорему о равенстве произведений отрезков секущих. То есть на самом деле мы можем выразить сторону PT через AT. Также ∠APT = 60 из вписанности. Получается, на самом деле в треугольнике APT мы знаем один из углов и две стороны. Остаётся только найти угол ATP любым удобным способом. Например, можно опустить высоту из T и найти неизвестный угол как сумму двух составляющих.
Пусть — середина стороны
Продлим луч
до точки
такой, что
Так как диагонали четырёхугольника
пересекаются в своих серединах, это параллелограмм; отсюда получаем, что точка
лежит на прямой
и
Отметим, что — параллелограмм (
равен и параллелен
поэтому искомый
С другой стороны, из
вписанности
имеем
Кроме того, — средняя линия
и параллельна сторонам
и
откуда получаем
Значит, треугольники
и
подобны по двум углам. Тогда
то есть
Введём масштаб длин на чертеже так, чтобы отрезок имел длину
тогда
и
а
Мы знаем
один из углов треугольника
и две его стороны; теперь можно воспользоваться любым из известных методов, чтобы
вычислить остальные его элементы (включая искомый угол
Например, опустим высоту
на прямую
Так как
отрезки
и
окажутся по разные стороны от прямой
В прямоугольном треугольнике
гипотенуза равна
а угол напротив катета
равен
то есть сам катет равен
Теперь ясно, что
прямоугольный треугольник
равнобедренный, так как отношение гипотенузы к катету в нём равно
Получаем
Ошибка.
Попробуйте повторить позже
Точка внутри остроугольного треугольника
такова, что
Точка
— середина стороны
Прямая
пересекает описанные окружности треугольников
и
в точках
и
соответственно (точка
лежит между точками
и
точка
лежит между точками
и
Оказалось, что
Докажите, что
Подсказка 1
У нас в задаче есть условие на углы и описанные окружности. Может, попробовать посчитать уголочки. Посмотрите, куда можно перекинуть уголочки ∠CAP и ∠BAP...
Подсказка 2
Т.к. DAPB- вписан ⇒ ∠PAB=∠PDB. Т.к. AEPC- вписан ⇒ ∠CAP=∠CEP. Но тогда ∠CEP=∠PDB. Это все, конечно, здорово, но мы пока не подобрались к отрезку BP. Нам нужно доказать, что BC=2BP. Это равносильно тому, что BP=BM. Т.е. нам надо доказать, что PBM- равнобедренный. Может, попробовать провести высоту BX и доказать, что PX=XM...
Подсказка 3
Мы еще не пользовались тем, что M- середина BC. Какое дополнительное построение сразу приходит в голову?
Подсказка 4
Конечно, удвоение медианы! Давайте удвоим XM: тогда получится точка Y, лежащая на прямой XM. Тогда т.к. BXCY-параллелограмм ⇒ ∠CYM=90° и CY=BX. Равны ли прямоугольные треугольники △DBX и △ECY?
Подсказка 5
Да! Т.к. CY=BX и ∠BDX=∠BDP=∠CEP=∠CEY. Но тогда DX=EY. Если мы докажем, что PX=MY, то мы победили. Вспомните, что DE=PM и доведите решение до конца!
Четырёхугольник — вписанный, поэтому
Аналогично четырёхугольник
— вписанный, поэтому
Опустим высоты и
на прямую
Заметим, что прямоугольные треугольники
и
равны по гипотенузе
и острому углу
, откуда получаем
Заметим, что прямоугольные треугольники и
равны по катету
и острому углу
откуда получаем
Тогда
Получается, что Следовательно, в треугольнике
высота
совпадает с медианой, поэтому он является
равнобедренным, и
что и требовалось.
Ошибка.
Попробуйте повторить позже
Диагонали трапеции пересекаются в точке
. На
отметили точку
такую, что прямая
параллельна
основаниям трапеции. Оказалось, что
— биссектриса угла
. Докажите, что трапеция прямоугольная.
Источники:
Подсказка 1
Пусть DE пересекает BС в точке К. Отметим накрест лежащие углы при EO и BC, а также соответственные углы при EO и КB. Что можно заметить теперь на рисунке?
Подсказка 2
Верно, равнобедренность одного из треугольников. Также мы знаем про факт, что у равнобедренных треугольников медиана является высотой.
Подсказка 3
Рассмотрим пары треугольников DBK, DOE и ABC, AEO. Что можно заметить при взгляде на них, учитывая подобие?
Подсказка 4
Равные коэффициенты подобия. Теперь задача быстро дорешивается фактом из 2 подсказки!
Пусть прямая пересекает прямую
в точке
.
Заметим, что , поэтому треугольник
является равнобедренным и
. Докажем, что
отрезок
является его медианой отсюда последует, что он также является и высотой, и трапеция окажется прямоугольной (в силу того,
что
).
Треугольники и
подобны с коэффициентом
, а также треугольники
и
подобны с коэффициентом
.
Эти коэффициенты подобия равны, поскольку параллельные прямые
и
высекают на прямых
и
пропорциональные
отрезки (также это можно вывести из подобия треугольников
и
. Итак,
Ошибка.
Попробуйте повторить позже
В остроугольном треугольнике через вершину
проведена прямая
, перпендикулярная медиане, выходящей из
вершины
. Продолжения высот
и
треугольника пересекают прямую
в точках
и
. Докажите, что
.
Подсказка 1
Сразу определим векторы, соответствующие сторонам треугольника и медиане. Как записать перпендикулярность «на языке векторов»?
Подсказка 2
Перпендикулярность векторов записываем как нулевое скалярное произведение! Теперь у нас есть 3 уравнения (скалярных произведения), попробуем их преобразовать и сделать выводы!
Подсказка 3
Нужное скалярное произведение есть 31/65 от суммы квадратов длин векторов AO и BO. А как учесть угол?)
Первое решение. Пусть и
Прямая
перпендикулярна медиане, следовательно,
С другой стороны, и
, поэтому
Складывая три полученных равенства, выводим
что возможно только если вектор нулевой, поскольку прямая
не перпендикулярна стороне
. Это обеспечивает равенство
.
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение. Обозначим середину отрезка за
. Отразим точки
и
относительно
, то есть построим точки
и
такие, что
является серединой отрезков
и
Ясно, что , что означает
. С другой стороны,
, так как
и
- это одна и та же прямая.
Наконец, отметим, что
: это следует из того, что
перпендикулярна
, а
- средняя линия в треугольнике
, то есть
.
Осталось воспользоваться тем, что высоты и
треугольника
пересекаются в одной точке. Это означает, что
совпадает с
, то есть
.
Ошибка.
Попробуйте повторить позже
– вписанный четырёхугольник,
На сторонах
и
отмечены точки
и
так, что
и
– середина
Докажите, что угол
– прямой.
Подсказка 1
Так, точки X и Y в явном виде нам вряд-ли помогут, поскольку только с помощью этих точек мы не сможем определить ∠AMC. Тогда, давайте достроим картинку таким образом, чтобы MC и MA стали средними в треугольниках. Что для этого нужно сделать?
Подсказка 2
Да, нужно удвоить YC за точку C и XA за точку A! Для удобства обозначим точки, полученные после удвоения: Y’ и X’. Тогда, чтобы доказать, что ∠AMC прямой, достаточно доказать, что стороны треугольников, которые параллельны MC и MA – перпендикулярны! Отметим равны углы и стороны, можно ли найти на картинке равные треугольники?
Подсказка 3
Да, Y’CD и DAX равны! Заметим, что на картинке появилось два равнобедренных треугольника: XDY’ и X’DY. Тогда нам достаточно доказать, что угол между биссектрисами этих треугольников прямой! Осталось посчитать уголочки.
Удвоим за точку
и
за точку
и получим
и
Тогда
и
— средние линии в треугольниках
и
Значит, достаточно доказать, что
и
перпендикулярны.
Заметим, что и
Отсюда треугольники
и
равны и треугольники
и
равны.
Тогда получается, что и
Это значит, что биссектрисы в треугольниках
и
также являются и
высотами. Мы хотим доказать, что
и
перпендикулярны. Это равносильно тому, чтобы перпендикуляры к этим прямым были
перпендикулярны, ведь угол между прямыми равен углу между перпендикулярами к ним.
Мы уже заметили, что биссектрисы в треугольниках и
также являются высотами, так значит, нам нужно показать, что
угол между биссектрисами является прямым. Давайте его посчитаем:
Заметим, что поэтому посчитанный выше угол равен