Тема . Всесиб (Всесибирская открытая олимпиада школьников)

Планиметрия на Всесибе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела всесиб (всесибирская открытая олимпиада школьников)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#31357

В выпуклом четырёхугольнике ABCD  известно, что AD = BC  и ∠ADB  +∠ACB  =∠CAB+  ∠DBA  =30∘ . Докажите, что из отрезков DB, CA  и DC  можно составить прямоугольный треугольник.

Источники: Всесиб-2019, 8.4 (см. sesc.nsu.ru)

Показать доказательство

Для начала заметим, что

∠ADC + ∠DCB = ∠ADB + ∠BDC + ∠ACD + ∠ACB =

= 30∘+∠BDC  +∠ACD  =30∘+ ∠CAB + ∠ABD

так как треугольники AOB  и DOC  имеют по равному углу (вертикальные), то из суммы углов в треугольнике получаем

30∘+ ∠CAB + ∠ABD = 30∘+30∘ = 60∘

Значит, ∠DAB + ∠ABC = 300∘.

Построим точку X  вовне четырёхугольника ABCD  такую, что ABX  равносторонний.

PIC

Теперь заметим, что

          ∘
∠DAX  = 360 − ∠XAB − ∠DAB =

= 300∘− ∠DAB = ∠ABC

и

∠XBC  = 360∘− ∠XBA − ∠ABC =

= 300∘− ∠ABC = ∠DAB

Но тогда равны треугольники XAD  и ABC  , откуда AC = DX;DAB  и XBC  , откуда BD = XC  . Кроме того,

∠DXC  = ∠DXA + ∠AXB + ∠BXC =

= ∠BAC + 60∘+∠ABD  = 60∘+ 30∘ = 90∘.

Значит, треугольник XDC  − искомый.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!