Тема . ПВГ (Покори Воробьёвы Горы)

Уравнения, неравенства и системы на ПВГ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#34673

Решите неравенство

√----
 x +2 >x − 3

Источники: ПВГ-2006 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Видим корни — сразу считаем ОДЗ. При каких х из ОДЗ неравенство всегда выполняется, так как корень принимает только неотрицательные значения?

Подсказка 2

При х < 3. Тогда х ≥ 3 обе части неравенства неотрицательны и можно сделать равносильный переход — возвести их в квадрат, ведь как-то надо избавляться от корня.

Подсказка 3

После приведения подобных полученный квадратный трехчлен будет иметь не самые привлекательные корни, поэтому придётся оценить, где они лежат относительно 3, чтобы получить правильное пересечение с неравенством х ≥ 3.

Показать ответ и решение

Обе части неравенства определены при x+ 2≥ 0  .

При x< 3  получим верное неравенство, ведь правая часть отрицательна, а левая неотрицательна.

При x≥ 3  можем без смены знака неравенства возвести обе части в квадрат (это будет равносильным переходом, потому что обе части неотрицательны):

       2              2
x +2> x − 6x+ 9 ⇐ ⇒  x  − 7x+ 7< 0

   ( 7− √21 7+√21)
x ∈  --2---;--2---

Поскольку 4< √21< 5  , то левый конец интервала   √--
7−221< 32 <3  , а правый  √ --
7+2-21-> 112->3  , так что в пересечении с условием x ≥3  получаем    [   √ -)
x ∈ 3,7+2-21- .

Осталось объединить рассмотренные случаи и записать ответ с учётом области определения неравенства (ОДЗ).

Ответ:

[− 2,7+√21)
     2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!