Тема ПВГ (Покори Воробьёвы Горы)

Уравнения, неравенства и системы на ПВГ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#94089

Решите систему

(|  2x− 3y+-1 =6,
|{         xy1
||(  3z− 6x+ xz1 = 2,
   6y− 2z+ yz = 3.

Источники: ПВГ - 2021, 11.4 (см. pvg.mk.ru)

Показать ответ и решение

Умножив первое уравнение на (2x− 3y)  , второе — на (3z− 6x)  , третье — на (6y− 2z)  и сложив, получаем уравнение-следствие:

      2         2        2  2x−-3y-  3z− 6x  6y-− 2z
(2x− 3y)+ (3z − 6x) +(6y− 2z) +  xy  +   xz   +  yz  = 6(2x − 3y)+ 2(3z− 6x)+ 3(6y− 2z)

(2x − 3y)2+(3z− 6x)2+ (6y− 2z)2 = 0

2x= 3y = z

Подстановка 2x =3y =z  в систему приводит к ответу:    1    1
x= 2,y = 3,z = 1  и     1      1
x= −2,y = − 3,z = −1.

Ответ:

(1,1,1) ,(− 1,− 1,− 1)
 2 3      2   3

Ошибка.
Попробуйте повторить позже

Задача 2#31185

Решите систему

({ ∘ x- ∘-y  -7-
   √y +  x = √xy√ +-1;
( x xy+ 78= −y xy.

Источники: ПВГ-2020

Показать ответ и решение

Область определения системы распадается на две подобласти: 1) x,y > 0  и 2) x,y < 0  .

При умножении первого уравнения на xy ⁄= 0  , получаем

     ∘ x-      ∘ y-   √--
x⋅(y⋅  y)+ y⋅(x⋅  x)= 7 xy+ xy

В подобласти (1)  верно     ∘--    √--
y =  y2,x =  x2  , то есть мы можем занести под корень и сократить:

{  √--   √--   √--
  x xy+ y-xy =7 xy +xy
       x√xy+ 78= −y√xy

откуда следует, что число    √ --
t=   xy  удовлетворяет квадратному уравнению t2 +7t+ 78 =0  , которое решение не имеет.

В подобласти (2)  же из-за того, что     ∘ --    √ --
y = − y2,x= −  x2  при занесении под корень в левой части появляются минусы перед корнями:

{   √ --  √ --  √ --
  − x xy−√y-xy = 7 xy+√ xy;
        x  xy +78= −y  xy,

откуда следует, что число    √ --
t =  xy  удовлетворяет квадратному уравнению  2
t +7t− 78 =0  , решениями которого являются t1 = −13,t2 = 6  .

Так как t> 0  , то с учетом исходной системы получаем x⋅y =36,x+y = −13.  В итоге имеем две пары решений (− 9;−4),(−4;−9)  .

Ответ:

 (−9;−4),(−4;−9)

Ошибка.
Попробуйте повторить позже

Задача 3#78980

Решите систему

(| √x2-− 2x+-4⋅log (4 − y)= x
{ ∘y2-−-2y-+4⋅log2(4− z)= y
|( √ 2--------  2
    z − 2z+ 4⋅log2(4− x)= z

Источники: ПВГ - 2020, 11.4 (см. pvg.mk.ru)

Показать ответ и решение

Введём в рассмотрение функции

     ----t----
f(t)= √t2−-2t+4-и g(t) =log2(4− t)

Под радикалами находятся заведомо положительные выражения x2− 2x +4= (x− 1)2+ 3,  поэтому на них можно поделить, а система примет такой вид:

(
|{ g(y)= f(x)
|( g(z)= f(y)
  g(x)= f(z)

Область определения системы задаётся тем, что каждая переменная меньше 4.

На этой области определения функция g(t)  монотонно убывает, а функция f(t)  имеет положительную производную:

f′(t)= -2-4−-t--3 >0 при t< 4,
      (t − 2t+4)2

поэтому является монотонно возрастающей.

Далее существует два способа решения:

Первое решение.

Заметим, что x= y = z = 2  является решением системы. Покажем, что других решений нет.

Действительно, пусть x <2.  Но тогда

log2(4− y)= f(x)< f(2)= 1  =⇒   4− y < 2 =⇒  y > 2 =⇒

log (4 − z)= f(y)> f(2)= 1 =⇒   4− z >2 =⇒   z < 2 =⇒
  2

log2(4 − x)= f(z)< f(2) =1 =⇒   4− x< 2  =⇒  x >2

сразу же получаем противоречие. Ясно, что случай 2< x< 4  рассматривается полностью аналогично.

Второе решение.

В силу обратимости функции g  получается явно выразить любую из переменных, причём выражаются они одинаково в силу цикличности системы:

y = 4− 2f(x) =4 − 2f(4−2f(z)) =4− 2f(4−2f(4−2f(y)))

y = h(h(h(y)))),

где функция h(u)= 4− 2f(u)  монотонно убывает по правилам монотонности сложной функции.

Тогда в правой части уравнения функция s(y)=h(h(h(y)))  монотонно убывает, а в левой части уравнения функция t(y)= y  , очевидно, монотонно возрастает. Поэтому равенство t(y)= h(y)  возможно не более, чем в одной точке. И при y = 2  оно как раз достигается. Всё проделанное справедливо и для оставшихся двух переменных.

Ответ:

 (2;2;2)

Ошибка.
Попробуйте повторить позже

Задача 4#32156

Решите уравнение

 2
x +8{x+ 4}− 9 =0

Источники: ПВГ-2019, 11.5 (см. rsr-olymp.ru)

Показать ответ и решение

Так как {x+ 4} ={x}= x− [x],  то получаем

    2                2
9 − x = 8x− 8[x] ⇐ ⇒ x + 8(x− [x])− 9= 0

Так как 0≤ {x+ 4}<1,  то

       2
0≤ 9− x = 8{x +4}< 8

1< x2 ≤9

Нужно рассмотреть случаи исходя из этой оценки

∙ Если x= 3  , то уравнение x2+8(x− 3)− 9= 0  обращается в тождество.

∙ Если 2≤x < 3  , то x2+8(x− 2)− 9= 0  . Корни этого уравнения − 4± √41  и корень − 4+ √41  попадает в нужный полуинтервал.

∙ Если 1< x< 2  , то x2+8(x− 1)− 9= 0  . Корни этого уравнения − 4± √33  и корень − 4 +√33  попадает в нужный полуинтервал.

∙ Если − 2≤x < −1  , то x2+ 8(x+ 2)− 9 =0  . Корни этого уравнения − 7,−1  и ни один не попадает в полуинтервал.

∙ Если − 3≤x < −2  , то x2+ 8(x+ 3)− 9 =0  . Корни этого уравнения − 5,−3  и корень − 3  подойдёт.

Ответ:

 {−3;−4+ √33;−4+ √41;3}

Ошибка.
Попробуйте повторить позже

Задача 5#32857

Решите неравенство

------1-----  -------2------
√x2-− x-− 2− 2 ≤ √x2-+14x+-40− 4.

Источники: ПВГ-2018, 11.1 (см. pvg.mk.ru)

Показать ответ и решение

ОДЗ задаётся четырьмя условиями:

 2
x − x− 2= (x +1)(x− 2)≥ 0,

(x +1)(x − 2)⁄= 4,

x2 +14x+ 40 =(x+ 4)(x+ 10)≥0,

x2+ 4x +40⁄= 16;

пересекая которые, получаем

x ∈(−∞; −12)∪ (− 12;−10]∪[−4;− 2)∪ (−2;− 1]∪ [2;3)∪ (3;+∞ )

Приведём дроби из условия к общему знаменателю

   √-2--------   √-2------
-√-2x-+-14x-+40√−-22-x-−-x−-2-- ≤0
( x − x− 2− 2)( x +14x+ 40− 4)

Знак разницы неотрицательных чисел (в данном случае корней из каких-то выражений) совпадает со знаком разницы их квадратов, потому что разность квадратов раскладывается в произведение разности этих чисел (знак которой нам и надо понять) и суммы этих чисел (которая и так неотрицательна, так что не влияет на знак). Поэтому неравенство равносильно:

x2+-14x-+40−-4(x2−-x−-2)          ---3(x−-8)(x+-2)---
 (x2− x− 6)(x2+ 14x +24) ≤0  ⇐ ⇒   (x − 3)(x+ 2)2(x+ 12) ≥0

Откуда по методу интервалов x ∈(−∞; −12)∪ (−2;3]∪[8;+ ∞)  .

Пересекаем с ОДЗ (−∞;−12)∪(−12;−10]∪ [− 4;−2)∪ (−2;−1]∪[2;3)∪(3;+∞ )  и получаем ответ.

Ответ:

 (−∞;− 12)∪ (− 2;−1]∪ [2;3)∪ [8;+∞ )

Ошибка.
Попробуйте повторить позже

Задача 6#113661

Решите неравенство

∘ --------- ∘ -----------      2
  x2− 4x+ 5+  3x2− 12x+ 13 ≤4x− x − 2.

Источники: ПВГ 2018

Показать ответ и решение

После выделения полных квадратов, неравенство принимает вид

∘ -----2--- ∘ ------2---       2
  (x− 2) +1+   3(x− 2) +1 ≤−(x− 2) +2

Делаем замену t= (x− 2),  тогда получим

∘----- ∘ -----    2
 t2+ 1+  3t2+ 1≤ −t + 2

Рассмотрим функцию

     ∘-2--- ∘ -2---   2
f(t)=  t + 1+  3t +1+ t − 2

Заметим, что функция возрастает при t≥0  и убывает при t< 0,  при этом

f(0)= √1 +√1 − 2 =0

Значит, при t⁄= 0  f(t)> 0,  а t= 0  нам подходит. При обратной замене получаем, что x= 2.

Ответ:

2

Ошибка.
Попробуйте повторить позже

Задача 7#67596

Решите уравнение

 √- 2016  √ ----2016
( x)   + ( 1− x)  = 1

Источники: ПВГ-2016 (см. pvg.mk.ru)

Показать ответ и решение

ОДЗ: 0≤ x≤ 1.

Подстановкой легко убедиться, что x= 0  и x = 1  — это решения.

При 0< x< 1  (на оставшейся области ОДЗ) оценим слагаемые в левой части

{                √- 2016
  0< x< 1  ⇐⇒   ( x)√ --<-x2016
  0< 1− x< 1  ⇐⇒   ( 1− x)   <1− x

Складывая эти неравенства, получаем

 √- 2016  √ ----2016
( x)   + ( 1− x)  < x+ (1 − x)= 1

Поэтому на интервале (0;1)  левая часть строго меньше единицы и равняться единице не может.

Ответ:

 0;1

Ошибка.
Попробуйте повторить позже

Задача 8#70344

Решите уравнение

(      2)(      2       10)  (      2       6)2
1 +x+ x   1+x +x + ...+ x  =  1+ x+x  +...+ x

Источники: ПВГ-2015, 11.1 (см. pvg.mk.ru)

Показать ответ и решение

Вспомним формулы сокращенного умножения. Домножим на (x− 1)2 ⁄= 0  , но учтём потом, что x =1  не является корнем.

      (      2)     (      2       10)       2(       2      6)2
(x− 1)1 +x+ x  (x − 1) 1+ x+x +...+ x   =(x− 1) 1+ x+ x +...+x

(3   )(11   )  (7   )2
x − 1  x − 1 = x − 1

 14  11   3     14   7
x  − x − x +1 =x  − 2x +1

x11+ x3− 2x7 =0

x= 0  — корень. Поделим на x3 ⁄= 0

x8 − 2x4+ 1= 0

(     )2
 x4− 1  =0  ⇐ ⇒  x =±1

x= 1  — посторонний корень

Ответ:

 {−1;0}

Ошибка.
Попробуйте повторить позже

Задача 9#77219

Решите уравнение

||   ∘ ---2||  ∘----2
|x+ x  1− x |= 1 +x .

Источники: ПВГ 2015

Показать ответ и решение

Первое решение.

Поскольку выражение слева и справа — чётные функции, то достаточно рассмотреть случай x ≥0.

Тогда на ОДЗ x∈ [0;1]  все преобразования равносильны. А при x∈∕ [0;1]  решений нет.

 ∘ -----    ∘ -----
x  1− x2+x =  1+ x2

 ∘ ----2  ∘----2
x  1− x =  1+ x − x

x2− x4 = 1+2x2− 2x∘1+-x2

2x∘1-+-x2-=x4+ x2+ 1

4x2(1+ x2)=(x2(x2+ 1)+ 1)2

(x2(x2+ 1) − 1)2 = 0

x4+x2− 1= 0.

Решив квадратное относительно  2
x  уравнение, получим    ∘ √5−1-
x=    2  .

Учитывая чётность всех выражений в исходном уравнении      ∘√----
x =±  --5−21.

Второе решение.

Используем неравенство Коши–Буняковского(скалярное произведение двух векторов на плоскости не превосходит произведения их длин) для векторов на плоскости вида √ -----
( 1− x2,x)  и ± (x,1)  . Получим

±(x∘1-− x2+ x)≤ 1⋅∘1+-x2

Равенство достигается, если вектора пропорциональны(косинус угла между ними равен 1  ), то есть

√-----
-1−-x2= x
  x     1

∘1-−-x2 = x2

    √-
x2 =-5−-1
      2
Ответ:

±∘ √5−1-
     2

Ошибка.
Попробуйте повторить позже

Задача 10#85028

Решите неравенство

∘ -2--- ∘ -2------- ∘ -------2-
  x − 1 + x − 4x +3+   2x +3 − x ≥ 2

Источники: ПВГ 2015

Показать ответ и решение

Запишем ОДЗ:

(|  x2 − 1≥ 0
||{  2
||  x − 4x+ 3≥ 0
|(  2x +3− x2 ≥ 0

(
||{  x∈ (−∞; −1]∪[1;+∞ )
|  x∈ (−∞; 1]∪ [3;+∞ )
|(  x∈ [−1;3]

x∈ {− 1;1;3}

Подставим получившиеся значения x

  • x =− 1.  Тогда

       √-
0+  8+ 0≥ 2

    Значит, x = −1  подходит.

  • x =1.  Тогда

    0+ 0+2 ≥2

    Значит, x = 1  подходит.

  • x =3.  Тогда

    √ -
  8+0+ 0≥ 2

    Значит, x = 3  подходит.

В итоге x∈ {− 1;1;3}.

Ответ:

 {−1;1;3}

Ошибка.
Попробуйте повторить позже

Задача 11#32856

Решите неравенство

√---- |2   | √ ---- |2        |
 9− x⋅|x − 1|≤  9− x⋅|x − 10x+13|.

Источники: ПВГ-2014, 11.1 (см. pvg.mk.ru)

Показать ответ и решение

Обе части неравенства определены при 9− x≥ 0  . При x =9  получим верное неравенство 0 ≤0  , так что это значение x  является решением. При x< 9  можем сократить на положительный корень без смены знака неравенства и возвести обе части в квадрат (это будет равносильным переходом, потому что обе части неотрицательны как модули каких-то выражений), после чего воспользоваться формулой разности квадратов:

  2      2              2   2   2         2
|x − 1|≤ |x − 10x +13|⇐⇒ (x − 1) ≤ (x − 10x+ 13)

          2
(10x− 14)(2x − 10x+12)≤ 0

(5x− 7)(x− 2)(x− 3)≤ 0

x∈(−∞; 7]∪[2;3]
       5

Осталось не забыть условие x< 9  , а также внести в ответ отдельно рассмотренное значение x =9  .

Ответ:

 (−∞; 7]∪ [2;3]∪ {9}
     5

Ошибка.
Попробуйте повторить позже

Задача 12#44152

Решите неравенство

 √x − √4
∘---1--x3--≥1.
 1 +x − √x

Источники: ПВГ-2014, 11.2 (см. pvg.mk.ru)

Показать ответ и решение

ОДЗ: x> 0,∘1-+-1− √3 ⁄= 0
         x   x  , откуда получаем x∈(0;8)∪ (8;+∞ ).

Для решения неравенство домножим числитель и знаменатель на √ -
  x:

  x− 4            (x− 4)− (√x+-1− 3)
√x+-1−-3 ≥ 1 ⇐⇒   ----√x-+1-− 3----≥ 0

После замены    √ ----
t=   x+1  имеем

2
t-− 2−-t≥ 0 ⇐⇒   (t+1)(t−-2)≥ 0
 t− 3               t− 3

По методу интервалов t∈[−1,2]∪ (3,+∞ )  , то есть √x-+1∈ (1;2]∪(3;+ ∞)  , откуда x +1 ∈(1;4]∪(9;+∞).  Решение (0;3]∪(8;+ ∞)  удовлетворяет ОДЗ.

Ответ:

 (0;3]∪(8;+∞ )

Ошибка.
Попробуйте повторить позже

Задача 13#70345

Решите неравенство

√---- | 2  |  √---- | 2       |
 7 − x⋅|x − 3|≤ 7− x⋅|x − 14x+ 27|

Источники: ПВГ-2014, 11.1 (см. pvg.mk.ru)

Показать ответ и решение

ОДЗ: x≤ 7  . x= 7  является решением. Поделим обе части на √7-−-x> 0

  2      2
|x − 3|≤ |x − 14x+ 27|

Получили неравенство вида |A |≤ |B| ⇐ ⇒  A2 ≤B2   ⇐⇒   (A − B )(A + B)≤ 0.

  2     2           2
(x − 3− x + 14x− 27)(2x − 14x+24)≤ 0

(14x − 30)(2x2− 14x+ 24)≤0 ⇐ ⇒  x ∈(− ∞;15]∪ [3;4]
                                      7

Объединяя с x= 7  и пересекая с ОДЗ получаем ответ.

Ответ:

(− ∞;15]∪[3;4]∪{7}
    7

Ошибка.
Попробуйте повторить позже

Задача 14#70350

Найдите сумму целых чисел, являющихся решениями неравенства

√------ ∘ --2--------   2
 5x− 11−  5x − 21x+ 21≥ 5x − 26x+ 32

Источники: ПВГ-2014 (см. pvg.mk.ru)

Показать ответ и решение

Выпишем условия ОДЗ:

{                       ({    11                                     √--
  5x−2 11 ≥0         ⇐⇒     x ≥(5   21−√21]  [21+√21-   )   ⇐⇒   x≥ 21+--21.
  5x − 21x+ 21≥ 0       ( x ∈ −∞;   10   ∪   10  ;+∞               10

Заметим, что   2            2
5x − 26x+ 32= (5x − 21x +21)− (5x− 11)  .

Пусть  2
5x − 21x+ 21 =B, 5x− 11 =A.  Тогда исходное неравенство примет вид

√-- √--
 A − B ≥ B − A

Домножим обе части на (√ -- √-)
   A+  B  ≥0.  Этот переход действительно равносильный, так как √-- √ --
 A +  B = 0 ⇐⇒   A =B = 0  — решение. Получаем

            (√ -- √-)
A− B ≥(B− A)   A+  B

      (√--  √--  )
(A− B)  A +  B +1 ≥ 0

Поделив обе части на (√A-+ √B-+ 1) > 0  получим A≥ B.

          2
5x − 11≥ 5x − 21x+ 21

x2 − 26x+ 32 ≤0 ⇐ ⇒  x ∈[2; 3,2]

Пересекая с ОДЗ получаем   [   √--   ]
x∈ 21+1021; 3,2 и единственное целое число, являющееся решением, это 3.

Ответ: 3

Ошибка.
Попробуйте повторить позже

Задача 15#32858

Решите неравенство

      √----   2  ∘ -2-------
4x +2 + 4 − x >x +  x − 5x+ 2.

Источники: ПВГ-2013, 11.4 (см.pvg.mk.ru)

Показать ответ и решение

Первое решение.

После переноса корней налево получаем √ ---- √ 2--------  2
  4− x − x − 5x+ 2> x − 4x − 2  .

Обозначив √----
 4 − x= a  и √-2-------
 x  − 5x+ 2= b  , получаем неравенство       2   2
a− b >b − a ⇐ ⇒  (a− b)(1+ a+b)> 0  .

Так как 1+ a+ b≥1 >0  , то остаётся решить a− b> 0  , то есть √----  √-2-------
 4− x>  x − 5x+2  . При возведении в квадрат учтём ОДЗ (неотрицательность подкоренных) и получим двойное неравенство:

4− x> x2− 5x +2 ≥0

Первое неравенство равносильно

 2                      √ -   √-
x − 4x − 2< 0 ⇐⇒  x∈ (2−  6;2+  6),

а второе

       5−-√17   5-+√17-
x∈ (− ∞;   2  ]∪ (  2  ;+∞ ).

Теперь нужно пересечь полученные промежутки.

Заметим, что    √-  5−√17
2−  6<   2  ,  так как     √-     √--
4− 2 6< 5−  17  , потому что √--        √ -     √ -
 17< 5= 1+ 2 4< 1+ 2 6  .

А вот    √-   5+√17
2+  6 < -2---  , так как     √-     √--
4 +2 6 <5+  17  , потому что  √-  √--  √ --    √ --    √--
2 6=  24 <  25 =1 +  16 <1+  17  .

В итоге при пересечении получаем       √ -5−√17
x∈ (2−  6;--2--]  .

Второе решение.

Перепишем неравенство в виде

     √ ----   2        ∘-2-------
4− x+  4− x> x − 5x+ 2+ x  − 5x+ 2.

Заметим, что функция f(t)= t2+t= t⋅(t+ 1)  монотонно возрастает при t≥ 0  . Поэтому неравенство f(√4-−-x) >f(√x2−-5x+-2)  равносильно неравенству √4−-x> √x2−-5x+2-  . А оно в свою очередь эквивалентно системе (второе и третье условия задают ОДЗ изначального неравенства):

(|{ 4− x> x2− 5x +2,
  4− x≥ 0         ⇐ ⇒
|( x2− 5x+ 2≥0

{
  x2− 4x− 2< 0,
  x2− 5x+ 2≥0

Так же, как и в первом решении, получаем

            √--
x∈(2− √6;5−--17]
           2
Ответ:

(2 − √6;5−√17]
        2

Ошибка.
Попробуйте повторить позже

Задача 16#91387

Найдите все пары вещественных чисел (x;y)  , удовлетворяющих системе

{    (2− √3)x = 3y+4y,
  ∘−-x2− 3xy−-y2 = 2y+ x.
                     2

Источники: ПВГ 2013

Показать ответ и решение

 y ≥−x∕4  . Возводим второе уравнение в квадрат.

  2        2   2       x2
− x − 3xy− y = 4y + 2xy+ 4

         5x2
5y2+5xy+ -4-= 0

y = − x
    2

Подставляем результат в первое уравнение системы:

(2− √3)x = 3−x∕2+ 4−x∕2

(2 − √3)x = (√3)− x+2−x

Заметим, что

             √- x    √- x
(2− √3)x = (2−-3)-⋅√(2+x-3)-=----1√--x = (2 +√3)−x
              (2+  3)       (2+  3)

поэтому

    √-− x  √ -−x   −x
(2+  3)  = ( 3)  + 2

Поделим обе части на (2+ √3)−x ⁄= 0

   (  √3  )−x  (   2  )−x
1=   2+√3-   +  2-+√3-

Функция слева представляет собой сумму монотонно убывающих функций, значит, корней у данного уравнения не более одного. Этот корень достаточно легко угадывается, x =− 1  , откуда y =1∕2  , что удовлетворяет ОДЗ.

Ответ:

 (−1;1∕2)

Ошибка.
Попробуйте повторить позже

Задача 17#34757

Решите уравнение

              | 22    2     2       |  |xy|
|1− x− y − xy|+ |2x y − 2x y− 2xy + 2xy− 9|+ xy = −1.

Источники: ПВГ-2012, 11.5 (см. pvg.mk.ru)

Показать ответ и решение

Заметим, что |xy|= ±1
xy  , откуда левая часть не меньше − 1  , равенство достигается тогда и только тогда, когда

(| 1 − x − y− xy = 0                 (| (x− 1)(y− 1)=2xy
{ 2x2y2− 2x2y− 2xy2+2xy− 9= 0   ⇐⇒   { 2xy(x− 1)(y − 1)= 9
|(                                   |(
  xy <0                               xy <0

Из первых двух уравнений следует, что (2xy)2 =9  , а с учётом третьего неравенства получаем xy = − 3
     2  . Для решения системы осталось подставить это в первое уравнение, потому что второе и третье условия мы уже учли

{ 1− x− y+ 3= 0        { x+ y = 5
  xy = − 3 2      ⇐⇒     xy = − 32
       2                      2

По обратной теореме Виета если решения системы есть, то числа x,y  будут корнями уравнения t2− 52t− 32 = 0 ⇐⇒   t=− 12 или t=3  . Осталось не забыть, что система симметрична (x;y)<− > (y;x)  , и записать обе пары в ответ.

Ответ:

 (3;− 1),(− 1;3)
    2   2

Ошибка.
Попробуйте повторить позже

Задача 18#33909

Решите неравенство

∘----2---   2
 x − x + 2+ x > 4− 5|x− 2|.

Источники: ПВГ-2011 (см. pvg.mk.ru)

Показать ответ и решение

ОДЗ: − x2+x +2 ≥0  ⇐⇒   x∈ [− 1,2]  , то есть мы знаем, что на ОДЗ x− 2≤0  .

Тогда раскроем модуль

∘------------              2
 − (x +1)(x − 2)=> 4+ 5x− 10− x = −(x− 2)(x− 3)

При x< 2  правая часть отрицательна, а левая неотрицательна, так что неравенство выполнено. Если же x= 2  , то обе части равны нулю, что не подходит в силу строгого знака.

Ответ:

 [−1;2)

Ошибка.
Попробуйте повторить позже

Задача 19#67701

Решите неравенство

∘ ---2----  2
  x− x +2+ x > 4− 5|x− 2|

Источники: ПВГ-2011, 11.3 (см. pvg.mk.ru)

Показать ответ и решение

Из ОДЗ получим − x2+x +2 ≥0  ⇐⇒   x∈ [− 1,2]  . Отсюда |x− 2|= 2− x  , подставим

∘ ----2---    2
  x− x +2 >− x +5x− 6

Нетрудно видеть, что x =2  является корнем для обеих частей неравенства, поэтому в этой точке достигается равенство. Также заметим, что при x∈[−1,2)  левая часть неотрицательна, при этом правая часть отрицательна, поскольку − x2+ 5x − 6 =(2− x)(x− 3)  — первая скобка будет положительна, а вторая отрицательна на этом промежутке. Значит, на [−1,2)  неравенство выполнено, а в x= 2  нет.

Ответ:

 [−1;2)

Ошибка.
Попробуйте повторить позже

Задача 20#48859

Решите уравнение

∘ -------- ∘ -----2
  1− |x − 2|+ 4x− x = 3+|x− 2|.

Источники: ПВГ-2010, 11.2 (см. pvg.mk.ru)

Показать ответ и решение

Заметим, что 4x − x2 =4− (4− 4x +x2)= 4− (x− 2)2  , сделаем замену t= |x − 2|≥ 0

√ ---- ∘ ---2-
  1− t+  4− t= 3+ t

Заметим, что из ОДЗ t∈ [0,1]  , а на этом отрезке оба корня в левой части строго убывают. В это же время функция 3+ t  монотонно возрастает и уравнение может иметь не более одного решения. Нетрудно видеть, что это t= 0  ⇐⇒   x= 2.

Ответ:

 2

Рулетка
Вы можете получить скидку в рулетке!