Тема ПВГ (Покори Воробьёвы Горы)

Уравнения, неравенства и системы на ПВГ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#94089

Решите систему

(|  2x− 3y+-1 =6,
|{         xy1
||(  3z− 6x+ xz1 = 2,
   6y− 2z+ yz = 3.

Источники: ПВГ - 2021, 11.4 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

С первого взгляда не очень понятно, что тут можно сделать... Однако оказывается, что здесь очень хорошо подобраны коэффициенты — попробуйте правые части уравнений домножить на разность соответствующих слагаемых в левой и сложить!

Подсказка 2

Ага, получился 0! А давайте тогда попробуем сделать с дробями то же самое, что получится? А значит, к какому следствию из системы хорошо бы перейти?

Показать ответ и решение

Умножив первое уравнение на (2x− 3y)  , второе — на (3z− 6x)  , третье — на (6y− 2z)  и сложив, получаем уравнение-следствие:

      2         2        2  2x−-3y-  3z− 6x  6y-− 2z
(2x− 3y)+ (3z − 6x) +(6y− 2z) +  xy  +   xz   +  yz  = 6(2x − 3y)+ 2(3z− 6x)+ 3(6y− 2z)

(2x − 3y)2+(3z− 6x)2+ (6y− 2z)2 = 0

2x= 3y = z

Подстановка 2x =3y =z  в систему приводит к ответу:    1    1
x= 2,y = 3,z = 1  и     1      1
x= −2,y = − 3,z = −1.

Ответ:

(1,1,1) ,(− 1,− 1,− 1)
 2 3      2   3

Ошибка.
Попробуйте повторить позже

Задача 2#31185

Решите систему

({ ∘ x- ∘-y  -7-
   √y +  x = √xy√ +-1;
( x xy+ 78= −y xy.

Источники: ПВГ-2020

Подсказки к задаче

Подсказка 1

Перенеся во втором уравнении правую часть налево, а 78 - направо, подумаем, что нужно сделать, чтобы сверху тоже получилось это выражение.

Подсказка 2

Конечно, напрашивается умножить на ху первое уравнение, только нужно рассмотреть два случая: когда 1) x>0 y>0 или 2) x<0 y<0, чтобы верно произвести умножение с корнями

Подсказка 3

Важно подметить, что в 1 случае sqrt(х^2) будет равен х, а во втором этот же корень равен -х. Эти два случая приведут к квадратным уравнениям относительно t = sqrt(xy), к решениям которых мы потом применим обратную замену и найдем ответ.

Показать ответ и решение

Область определения системы распадается на две подобласти: 1) x,y > 0  и 2) x,y < 0  .

При умножении первого уравнения на xy ⁄= 0  , получаем

     ∘ x-      ∘ y-   √--
x⋅(y⋅  y)+ y⋅(x⋅  x)= 7 xy+ xy

В подобласти (1)  верно     ∘--    √--
y =  y2,x =  x2  , то есть мы можем занести под корень и сократить:

{  √--   √--   √--
  x xy+ y-xy =7 xy +xy
       x√xy+ 78= −y√xy

откуда следует, что число    √ --
t=   xy  удовлетворяет квадратному уравнению t2 +7t+ 78 =0  , которое решение не имеет.

В подобласти (2)  же из-за того, что     ∘ --    √ --
y = − y2,x= −  x2  при занесении под корень в левой части появляются минусы перед корнями:

{   √ --  √ --  √ --
  − x xy−√y-xy = 7 xy+√ xy;
        x  xy +78= −y  xy,

откуда следует, что число    √ --
t =  xy  удовлетворяет квадратному уравнению  2
t +7t− 78 =0  , решениями которого являются t1 = −13,t2 = 6  .

Так как t> 0  , то с учетом исходной системы получаем x⋅y =36,x+y = −13.  В итоге имеем две пары решений (− 9;−4),(−4;−9)  .

Ответ:

 (−9;−4),(−4;−9)

Ошибка.
Попробуйте повторить позже

Задача 3#78980

Решите систему

(| √x2-− 2x+-4⋅log (4 − y)= x
{ ∘y2-−-2y-+4⋅log2(4− z)= y
|( √ 2--------  2
    z − 2z+ 4⋅log2(4− x)= z

Источники: ПВГ - 2020, 11.4 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Что сразу видно на счет этой системы? Что она симметрична, а также что в каждом уравнении используется только 2 переменных. То есть мы можем ввести функции f и g так, чтобы у нас получилось равенство вида g(y) = f(x), g(z) = f(y), g(x) = f(z). Зачем нам так делать? Потому что мы можем эти функции исследовать и что-то понять про них.

Подсказка 2

Возьмем f(x) = x/sqrt(x^2 - 2x + 4). g(x) = log_2(4 - t). Ого, но ведь производная f на всей области определения больше нуля! Это дает нам возможность перехода вида f(a) > f(b) <=> a > b. Аналогично можно сказать и про g, только на счет убывания. Тогда, идейно, остается найти какое-то одно решение системы и доказать, что других нет.

Подсказка 3

Подходит решение (2, 2, 2). Теперь можно предположить, что наша система имеет другое решение, то есть хотя бы 1 переменная не равна 2. Пусть тогда x < 2. Если у нас есть это неравенство и неравенство из 2-ой подсказки, то как нам прийти к противоречию (показать, что тогда х > 2)?

Показать ответ и решение

Введём в рассмотрение функции

     ----t----
f(t)= √t2−-2t+4-и g(t) =log2(4− t)

Под радикалами находятся заведомо положительные выражения x2− 2x +4= (x− 1)2+ 3,  поэтому на них можно поделить, а система примет такой вид:

(
|{ g(y)= f(x)
|( g(z)= f(y)
  g(x)= f(z)

Область определения системы задаётся тем, что каждая переменная меньше 4.

На этой области определения функция g(t)  монотонно убывает, а функция f(t)  имеет положительную производную:

f′(t)= -2-4−-t--3 >0 при t< 4,
      (t − 2t+4)2

поэтому является монотонно возрастающей.

Далее существует два способа решения:

Первое решение.

Заметим, что x= y = z = 2  является решением системы. Покажем, что других решений нет.

Действительно, пусть x <2.  Но тогда

log2(4− y)= f(x)< f(2)= 1  =⇒   4− y < 2 =⇒  y > 2 =⇒

log (4 − z)= f(y)> f(2)= 1 =⇒   4− z >2 =⇒   z < 2 =⇒
  2

log2(4 − x)= f(z)< f(2) =1 =⇒   4− x< 2  =⇒  x >2

сразу же получаем противоречие. Ясно, что случай 2< x< 4  рассматривается полностью аналогично.

Второе решение.

В силу обратимости функции g  получается явно выразить любую из переменных, причём выражаются они одинаково в силу цикличности системы:

y = 4− 2f(x) =4 − 2f(4−2f(z)) =4− 2f(4−2f(4−2f(y)))

y = h(h(h(y)))),

где функция h(u)= 4− 2f(u)  монотонно убывает по правилам монотонности сложной функции.

Тогда в правой части уравнения функция s(y)=h(h(h(y)))  монотонно убывает, а в левой части уравнения функция t(y)= y  , очевидно, монотонно возрастает. Поэтому равенство t(y)= h(y)  возможно не более, чем в одной точке. И при y = 2  оно как раз достигается. Всё проделанное справедливо и для оставшихся двух переменных.

Ответ:

 (2;2;2)

Ошибка.
Попробуйте повторить позже

Задача 4#32156

Решите уравнение

 2
x +8{x+ 4}− 9 =0

Источники: ПВГ-2019, 11.5 (см. rsr-olymp.ru)

Подсказки к задаче

Подсказка 1

Важный метод решения уравнений с целой и дробной частями: оценки сверху и снизу. Можно избавиться от большого количества иксов на оси справа, от большого количества иксов на оси слева и свести задачу к рассмотрению случаев: на каждом маленьком промежутке мы точно поймём, как раскроется дробная часть

Подсказка 2

Подумайте, так ли важна нам четвёрка внутри дробной части. Если мы к какому-то числу прибавим целое число, то изменится ли от этого дробная часть? Используйте оценку дробной части и это знание, чтобы оценить x^2-9, а потом и сам икс, сверху и снизу!

Подсказка 3

Осталось правильно разбить полученный промежуток на промежутки поменьше, чтобы дробная часть на них раскрылась однозначно. В каждом таком случае мы либо подставляем конкретный икс, либо получаем квадратное уравнение на икс с ограничениями на его значения (не забывайте эти ограничения при поиске корней учитывать!)

Показать ответ и решение

Так как {x+ 4} ={x}= x− [x],  то получаем

    2                2
9 − x = 8x− 8[x] ⇐ ⇒ x + 8(x− [x])− 9= 0

Так как 0≤ {x+ 4}<1,  то

       2
0≤ 9− x = 8{x +4}< 8

1< x2 ≤9

Нужно рассмотреть случаи исходя из этой оценки

∙ Если x= 3  , то уравнение x2+8(x− 3)− 9= 0  обращается в тождество.

∙ Если 2≤x < 3  , то x2+8(x− 2)− 9= 0  . Корни этого уравнения − 4± √41  и корень − 4+ √41  попадает в нужный полуинтервал.

∙ Если 1< x< 2  , то x2+8(x− 1)− 9= 0  . Корни этого уравнения − 4± √33  и корень − 4 +√33  попадает в нужный полуинтервал.

∙ Если − 2≤x < −1  , то x2+ 8(x+ 2)− 9 =0  . Корни этого уравнения − 7,−1  и ни один не попадает в полуинтервал.

∙ Если − 3≤x < −2  , то x2+ 8(x+ 3)− 9 =0  . Корни этого уравнения − 5,−3  и корень − 3  подойдёт.

Ответ:

 {−3;−4+ √33;−4+ √41;3}

Ошибка.
Попробуйте повторить позже

Задача 5#32857

Решите неравенство

------1-----  -------2------
√x2-− x-− 2− 2 ≤ √x2-+14x+-40− 4.

Источники: ПВГ-2018, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

В первую очередь надо записать ограничения на икс, так как подкоренные выражения должны быть неотрицательными. Теперь можно заметить, что в одной части в числителе 1, а в другой 2, для чего так сделано?

Подсказка 2

Перенесём всё налево и попробуем привести дроби к общему знаменателю. Тогда в числителе -4 сократится с (-2) * (-2). Так вот зачем взяли такие числители! Осталось дорешать неравенство обобщённым методом интервалов. То есть найти нули числителя и знаменателя, отметить их на числовой прямой, причём выколоть нули знаменателя, расставить знаки на каждом промежутке, взять нужные промежутки.

Подсказка 3

Не забыли про ограничения? Их нужно пересечь с полученным множеством!

Показать ответ и решение

ОДЗ задаётся четырьмя условиями:

 2
x − x− 2= (x +1)(x− 2)≥ 0,

(x +1)(x − 2)⁄= 4,

x2 +14x+ 40 =(x+ 4)(x+ 10)≥0,

x2+ 4x +40⁄= 16;

пересекая которые, получаем

x ∈(−∞; −12)∪ (− 12;−10]∪[−4;− 2)∪ (−2;− 1]∪ [2;3)∪ (3;+∞ )

Приведём дроби из условия к общему знаменателю

   √-2--------   √-2------
-√-2x-+-14x-+40√−-22-x-−-x−-2-- ≤0
( x − x− 2− 2)( x +14x+ 40− 4)

Знак разницы неотрицательных чисел (в данном случае корней из каких-то выражений) совпадает со знаком разницы их квадратов, потому что разность квадратов раскладывается в произведение разности этих чисел (знак которой нам и надо понять) и суммы этих чисел (которая и так неотрицательна, так что не влияет на знак). Поэтому неравенство равносильно:

x2+-14x-+40−-4(x2−-x−-2)          ---3(x−-8)(x+-2)---
 (x2− x− 6)(x2+ 14x +24) ≤0  ⇐ ⇒   (x − 3)(x+ 2)2(x+ 12) ≥0

Откуда по методу интервалов x ∈(−∞; −12)∪ (−2;3]∪[8;+ ∞)  .

Пересекаем с ОДЗ (−∞;−12)∪(−12;−10]∪ [− 4;−2)∪ (−2;−1]∪[2;3)∪(3;+∞ )  и получаем ответ.

Ответ:

 (−∞;− 12)∪ (− 2;−1]∪ [2;3)∪ [8;+∞ )

Ошибка.
Попробуйте повторить позже

Задача 6#113661

Решите неравенство

∘ --------- ∘ -----------      2
  x2− 4x+ 5+  3x2− 12x+ 13 ≤4x− x − 2.

Источники: ПВГ 2018

Подсказки к задаче

Подсказка 1

Хмм, под корнями и в правой части мы видим квадратные трёхчлены, при этом слагаемые x² - 4x наталкивают на мысль о том, что можно выделить полный квадрат. Попробуйте это сделать.

Подсказка 2

О, получилось, что обе части неравенства — это какие-то уравнения относительно (x-2). Тогда сделаем замену t=x-2 и получим неравенство гораздо проще исходного!

Подсказка 3

Рассмотрим функцию от t, которая является разностью левой и правой частей уравнения. Как она расположена относительно оси абсцисс?

Показать ответ и решение

После выделения полных квадратов, неравенство принимает вид

∘ -----2--- ∘ ------2---       2
  (x− 2) +1+   3(x− 2) +1 ≤−(x− 2) +2

Делаем замену t= (x− 2),  тогда получим

∘----- ∘ -----    2
 t2+ 1+  3t2+ 1≤ −t + 2

Рассмотрим функцию

     ∘-2--- ∘ -2---   2
f(t)=  t + 1+  3t +1+ t − 2

Заметим, что функция возрастает при t≥0  и убывает при t< 0,  при этом

f(0)= √1 +√1 − 2 =0

Значит, при t⁄= 0  f(t)> 0,  а t= 0  нам подходит. При обратной замене получаем, что x= 2.

Ответ:

2

Ошибка.
Попробуйте повторить позже

Задача 7#67596

Решите уравнение

 √- 2016  √ ----2016
( x)   + ( 1− x)  = 1

Источники: ПВГ-2016 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Ключом к решению этой задачи является правильно написанное ОДЗ! Поэтому для начала найдем ОДЗ нашего уравнения!

Подсказка 2

Верно, 0 ≤ x ≤ 1! А что можно сказать про (√x)²⁰¹⁶ и (√(x-1))²⁰¹⁶? Может мы их можем как-то оценить, учитывая наше ОДЗ?

Подсказка 3

Да, если есть число, которое меньше единицы, но больше нуля, то при возведении в степень это число будет уменьшатся! То есть, мы имеем: x¹⁰⁰⁸ < x и (1-x)¹⁰⁰⁸ < 1 — x! Таким образом, если x ≠ 0 и x ≠ 1, то решений нет! Осталось проверить случаи x = 1 и x = 0.

Показать ответ и решение

ОДЗ: 0≤ x≤ 1.

Подстановкой легко убедиться, что x= 0  и x = 1  — это решения.

При 0< x< 1  (на оставшейся области ОДЗ) оценим слагаемые в левой части

{                √- 2016
  0< x< 1  ⇐⇒   ( x)√ --<-x2016
  0< 1− x< 1  ⇐⇒   ( 1− x)   <1− x

Складывая эти неравенства, получаем

 √- 2016  √ ----2016
( x)   + ( 1− x)  < x+ (1 − x)= 1

Поэтому на интервале (0;1)  левая часть строго меньше единицы и равняться единице не может.

Ответ:

 0;1

Ошибка.
Попробуйте повторить позже

Задача 8#70344

Решите уравнение

(      2)(      2       10)  (      2       6)2
1 +x+ x   1+x +x + ...+ x  =  1+ x+x  +...+ x

Источники: ПВГ-2015, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Скобка (1+x+...xⁿ) кажется очень знакомой, где мы её могли видеть?...

Подсказка 2

Точно! В формула разности n-ых степеней, ведь xⁿ - 1 = (x-1)(xⁿ⁻¹+...+x+1). То есть у нас часть произведения. Что же хочется сделать?...

Подсказка 3

Верно! Хочется дополнить до полного произведения. Домножим обе части на (x-1)(x-1). Что мы имеем теперь?

Подсказка 4

(x¹¹-1)(x³-1) = (x-7)². Осталось немного...

Подсказка 5

Раскройте скобки, приведите подобные и получите красивую штуку! Успехов!

Показать ответ и решение

Вспомним формулы сокращенного умножения. Домножим на (x− 1)2 ⁄= 0  , но учтём потом, что x =1  не является корнем.

      (      2)     (      2       10)       2(       2      6)2
(x− 1)1 +x+ x  (x − 1) 1+ x+x +...+ x   =(x− 1) 1+ x+ x +...+x

(3   )(11   )  (7   )2
x − 1  x − 1 = x − 1

 14  11   3     14   7
x  − x − x +1 =x  − 2x +1

x11+ x3− 2x7 =0

x= 0  — корень. Поделим на x3 ⁄= 0

x8 − 2x4+ 1= 0

(     )2
 x4− 1  =0  ⇐ ⇒  x =±1

x= 1  — посторонний корень

Ответ:

 {−1;0}

Ошибка.
Попробуйте повторить позже

Задача 9#77219

Решите уравнение

||   ∘ ---2||  ∘----2
|x+ x  1− x |= 1 +x .

Источники: ПВГ 2015

Подсказки к задаче

Подсказка 1

Посмотрите внимательно на уравнение: есть в нем какие-то элементы, на которые стоит обратить внимание?

Подсказка 2

Что особенного в модуле и x²? Может быть, они смогут как-то сократить количество х, которые нужно рассмотреть?

Подсказка 3

Какие значения х достаточно рассмотреть, если у нас есть четные функции слева и справа?

Подсказка 4

Раз решаем уравнение, то что стоит записать?

Подсказка 5

Так как взяли для рассмотрения только x≥0, то что можно сделать на ОДЗ?

Подсказка 6

После раскрытия модуля останутся два выражения с корнем. Что обычно делаем в таком случае?

Подсказка 7

Да, стоит возвести в квадрат. Но что можно сделать, чтобы эта операция прошла проще, чем если возводить части уравнения в текущем виде?

Подсказка 8

Перенесли +х вправо, чтобы упростить конструкцию, и возвели в квадрат. Но корень все еще остался. Что можно сделать, чтобы избавиться от него окончательно?

Подсказка 9

Да, снова оставить корень с одной стороны, а все остальное перенести в другую. Можно бы было, конечно, после этого честно раскрывать квадраты, но решать уравнения четвертой степени явно не хочется. Может быть, заметите что-то общее между левой и правой частью?

Подсказка 10

Может быть, в выражении справа можно сделать какое-то преобразование, чтобы вышло похоже на выражение слева? И стоит вспомнить, что сумму трех элементов можно представить, как сумму двух.

Подсказка 11

x⁴ + x² = x²(x² + 1). Можно ли с помощью этого как-то объединить левую и правую часть в одно выражение?

Подсказка 12

(a+1)² - 4a = 0. Ничего не напоминает?

Подсказка 13

Выразили как квадрат разности, и теперь осталось простое биквадратное уравнение.

Подсказка 14

Не забудьте, что мы рассматривали только часть допустимых х!

Показать ответ и решение

Первое решение.

Поскольку выражение слева и справа — чётные функции, то достаточно рассмотреть случай x ≥0.

Тогда на ОДЗ x∈ [0;1]  все преобразования равносильны. А при x∈∕ [0;1]  решений нет.

 ∘ -----    ∘ -----
x  1− x2+x =  1+ x2

 ∘ ----2  ∘----2
x  1− x =  1+ x − x

x2− x4 = 1+2x2− 2x∘1+-x2

2x∘1-+-x2-=x4+ x2+ 1

4x2(1+ x2)=(x2(x2+ 1)+ 1)2

(x2(x2+ 1) − 1)2 = 0

x4+x2− 1= 0.

Решив квадратное относительно  2
x  уравнение, получим    ∘ √5−1-
x=    2  .

Учитывая чётность всех выражений в исходном уравнении      ∘√----
x =±  --5−21.

Второе решение.

Используем неравенство Коши–Буняковского(скалярное произведение двух векторов на плоскости не превосходит произведения их длин) для векторов на плоскости вида √ -----
( 1− x2,x)  и ± (x,1)  . Получим

±(x∘1-− x2+ x)≤ 1⋅∘1+-x2

Равенство достигается, если вектора пропорциональны(косинус угла между ними равен 1  ), то есть

√-----
-1−-x2= x
  x     1

∘1-−-x2 = x2

    √-
x2 =-5−-1
      2
Ответ:

±∘ √5−1-
     2

Ошибка.
Попробуйте повторить позже

Задача 10#85028

Решите неравенство

∘ -2--- ∘ -2------- ∘ -------2-
  x − 1 + x − 4x +3+   2x +3 − x ≥ 2

Источники: ПВГ 2015

Подсказки к задаче

Подсказка 1

Если вы видите страшное неравенство и не знаете, что делать, не спешите сразу что-то преобразовывать. Вероятно, стоит выполнить действие, самое стандартное при решении неравенств, которое точно лишним не будет.

Подсказка 2

Первое правило решение неравенств: видишь неравенство — выписываешь ОДЗ. Вдруг она как-то поможет?

Подсказка 3

Второе правило решения неравенств: смотришь на неравенство и думаешь, а можно ли его как-то упростить на ОДЗ?

Подсказка 4

Подходит ли точка, всегда можно проверить с помощью её подстановки в исходное неравенство :)

Показать ответ и решение

Запишем ОДЗ:

(|  x2 − 1≥ 0
||{  2
||  x − 4x+ 3≥ 0
|(  2x +3− x2 ≥ 0

(
||{  x∈ (−∞; −1]∪[1;+∞ )
|  x∈ (−∞; 1]∪ [3;+∞ )
|(  x∈ [−1;3]

x∈ {− 1;1;3}

Подставим получившиеся значения x

  • x =− 1.  Тогда

       √-
0+  8+ 0≥ 2

    Значит, x = −1  подходит.

  • x =1.  Тогда

    0+ 0+2 ≥2

    Значит, x = 1  подходит.

  • x =3.  Тогда

    √ -
  8+0+ 0≥ 2

    Значит, x = 3  подходит.

В итоге x∈ {− 1;1;3}.

Ответ:

 {−1;1;3}

Ошибка.
Попробуйте повторить позже

Задача 11#32856

Решите неравенство

√---- |2   | √ ---- |2        |
 9− x⋅|x − 1|≤  9− x⋅|x − 10x+13|.

Источники: ПВГ-2014, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Сразу запишем ОДЗ. Теперь хотелось бы убрать корни и работать только с модулями. Для этого можно отдельно подставить x = 9, далее рассматривать x < 9. При таких условиях корень из (9 - x) больше нуля, а значит, на него можно поделить без изменения знака неравенства.

Подсказка 2

Работать с модулями неудобно, особенно когда внутри стоят не линейные функции: нужно сначала определить промежутки знакопостоянства, а затем раскрывать модули в зависимости от промежутка. Но в данном случае нам повезло, в обеих частях стоят по одному модулю, а значит, они неотрицательны. Тогда можно смело возвести в квадрат! Это равносильное преобразование, поэтому после переноса в одну часть по разности квадратов получим одно неравенство вместо системы, если бы раскрывали модули.

Подсказка 3

Решите полученное неравенство с помощью метода интервалов. Не забудьте учесть ограничение!

Показать ответ и решение

Обе части неравенства определены при 9− x≥ 0  . При x =9  получим верное неравенство 0 ≤0  , так что это значение x  является решением. При x< 9  можем сократить на положительный корень без смены знака неравенства и возвести обе части в квадрат (это будет равносильным переходом, потому что обе части неотрицательны как модули каких-то выражений), после чего воспользоваться формулой разности квадратов:

  2      2              2   2   2         2
|x − 1|≤ |x − 10x +13|⇐⇒ (x − 1) ≤ (x − 10x+ 13)

          2
(10x− 14)(2x − 10x+12)≤ 0

(5x− 7)(x− 2)(x− 3)≤ 0

x∈(−∞; 7]∪[2;3]
       5

Осталось не забыть условие x< 9  , а также внести в ответ отдельно рассмотренное значение x =9  .

Ответ:

 (−∞; 7]∪ [2;3]∪ {9}
     5

Ошибка.
Попробуйте повторить позже

Задача 12#44152

Решите неравенство

 √x − √4
∘---1--x3--≥1.
 1 +x − √x

Источники: ПВГ-2014, 11.2 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Запишем сначала ОДЗ нашего неравенства, чтобы мы могли его преобразовывать. Так, теперь что хочется сделать в первую очередь, видя такое некрасивое неравенство? Попробуйте не испугаться и преобразовать его, приведя числитель и знаменатель к одной дроби.

Подсказка 2

Ага, видим, что у дробей числителя и знаменателя общий знаменатель, который после деления сократится. Далее, перенеся 1 влево и преобразовав, видим в знаменателе и числителе неприятный корень. Давайте упростим себе жизнь! Что с ним можно попробовать сделать?

Подсказка 3

Верно, давайте сделаем замену √(x+1)=t. Тогда х отсюда легко выражается и у нас получается обычное неравенство. Осталось только решить его методом интервалов и сделать обратную замену.

Показать ответ и решение

ОДЗ: x> 0,∘1-+-1− √3 ⁄= 0
         x   x  , откуда получаем x∈(0;8)∪ (8;+∞ ).

Для решения неравенство домножим числитель и знаменатель на √ -
  x:

  x− 4            (x− 4)− (√x+-1− 3)
√x+-1−-3 ≥ 1 ⇐⇒   ----√x-+1-− 3----≥ 0

После замены    √ ----
t=   x+1  имеем

2
t-− 2−-t≥ 0 ⇐⇒   (t+1)(t−-2)≥ 0
 t− 3               t− 3

По методу интервалов t∈[−1,2]∪ (3,+∞ )  , то есть √x-+1∈ (1;2]∪(3;+ ∞)  , откуда x +1 ∈(1;4]∪(9;+∞).  Решение (0;3]∪(8;+ ∞)  удовлетворяет ОДЗ.

Ответ:

 (0;3]∪(8;+∞ )

Ошибка.
Попробуйте повторить позже

Задача 13#70350

Найдите сумму целых чисел, являющихся решениями неравенства

√------ ∘ --2--------   2
 5x− 11−  5x − 21x+ 21≥ 5x − 26x+ 32

Источники: ПВГ-2014 (см. pvg.mk.ru)

Показать ответ и решение

Выпишем условия ОДЗ:

{                       ({    11                                     √--
  5x−2 11 ≥0         ⇐⇒     x ≥(5   21−√21]  [21+√21-   )   ⇐⇒   x≥ 21+--21.
  5x − 21x+ 21≥ 0       ( x ∈ −∞;   10   ∪   10  ;+∞               10

Заметим, что   2            2
5x − 26x+ 32= (5x − 21x +21)− (5x− 11)  .

Пусть  2
5x − 21x+ 21 =B, 5x− 11 =A.  Тогда исходное неравенство примет вид

√-- √--
 A − B ≥ B − A

Домножим обе части на (√ -- √-)
   A+  B  ≥0.  Этот переход действительно равносильный, так как √-- √ --
 A +  B = 0 ⇐⇒   A =B = 0  — решение. Получаем

            (√ -- √-)
A− B ≥(B− A)   A+  B

      (√--  √--  )
(A− B)  A +  B +1 ≥ 0

Поделив обе части на (√A-+ √B-+ 1) > 0  получим A≥ B.

          2
5x − 11≥ 5x − 21x+ 21

x2 − 26x+ 32 ≤0 ⇐ ⇒  x ∈[2; 3,2]

Пересекая с ОДЗ получаем   [   √--   ]
x∈ 21+1021; 3,2 и единственное целое число, являющееся решением, это 3.

Ответ: 3

Ошибка.
Попробуйте повторить позже

Задача 14#32858

Решите неравенство

      √----   2  ∘ -2-------
4x +2 + 4 − x >x +  x − 5x+ 2.

Источники: ПВГ-2013, 11.4 (см.pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Справа под корнем есть x² и другие слагаемые, а без корня только x². Хочется добавить недостающие слагаемые, чтобы можно было сделать замену и получить в обеих частях выражение вида t + √t. Для этого давайте вычтем из обеих частей 5x и добавим 2. Что хорошее тогда можно заметить?

Подсказка 2

Теперь мы получили слева и справа похожие выражение, по сути нам нужно решить неравенство f(g(x)) > f(h(x)). Из f(a) > f(b) в общем случае не следует сразу a > b, например, для f(t) = -t. или f(t) = sin t. Но что хорошего можно сказать про нашу рассматриваемую функцию f(t) = t + √t?

Подсказка 3

Она монотонно возрастает! То есть большему значению аргумента соответствует большее значение функции и наоборот.

Подсказка 4

Теперь нужно решить полученное неравенство на аргументы, причём учесть область определения исходного неравенства.

Показать ответ и решение

Первое решение.

После переноса корней налево получаем √ ---- √ 2--------  2
  4− x − x − 5x+ 2> x − 4x − 2  .

Обозначив √----
 4 − x= a  и √-2-------
 x  − 5x+ 2= b  , получаем неравенство       2   2
a− b >b − a ⇐ ⇒  (a− b)(1+ a+b)> 0  .

Так как 1+ a+ b≥1 >0  , то остаётся решить a− b> 0  , то есть √----  √-2-------
 4− x>  x − 5x+2  . При возведении в квадрат учтём ОДЗ (неотрицательность подкоренных) и получим двойное неравенство:

4− x> x2− 5x +2 ≥0

Первое неравенство равносильно

 2                      √ -   √-
x − 4x − 2< 0 ⇐⇒  x∈ (2−  6;2+  6),

а второе

       5−-√17   5-+√17-
x∈ (− ∞;   2  ]∪ (  2  ;+∞ ).

Теперь нужно пересечь полученные промежутки.

Заметим, что    √-  5−√17
2−  6<   2  ,  так как     √-     √--
4− 2 6< 5−  17  , потому что √--        √ -     √ -
 17< 5= 1+ 2 4< 1+ 2 6  .

А вот    √-   5+√17
2+  6 < -2---  , так как     √-     √--
4 +2 6 <5+  17  , потому что  √-  √--  √ --    √ --    √--
2 6=  24 <  25 =1 +  16 <1+  17  .

В итоге при пересечении получаем       √ -5−√17
x∈ (2−  6;--2--]  .

Второе решение.

Перепишем неравенство в виде

     √ ----   2        ∘-2-------
4− x+  4− x> x − 5x+ 2+ x  − 5x+ 2.

Заметим, что функция f(t)= t2+t= t⋅(t+ 1)  монотонно возрастает при t≥ 0  . Поэтому неравенство f(√4-−-x) >f(√x2−-5x+-2)  равносильно неравенству √4−-x> √x2−-5x+2-  . А оно в свою очередь эквивалентно системе (второе и третье условия задают ОДЗ изначального неравенства):

(|{ 4− x> x2− 5x +2,
  4− x≥ 0         ⇐ ⇒
|( x2− 5x+ 2≥0

{
  x2− 4x− 2< 0,
  x2− 5x+ 2≥0

Так же, как и в первом решении, получаем

            √--
x∈(2− √6;5−--17]
           2
Ответ:

(2 − √6;5−√17]
        2

Ошибка.
Попробуйте повторить позже

Задача 15#91387

Найдите все пары вещественных чисел (x;y)  , удовлетворяющих системе

{    (2− √3)x = 3y+4y,
  ∘−-x2− 3xy−-y2 = 2y+ x.
                     2

Источники: ПВГ 2013

Подсказки к задаче

Подсказка 1

Возведи второе уравнение в квадрат.

Подсказка 2

Подставьте решение второго уравнения в первое.

Подсказка 3

Попробуйте привести (2 - √3)ˣ к иному виду, воспользовавшись формулой разности квадратов.

Подсказка 4

Можно домножить (2 - √3)ˣ на (2 + √3)ˣ.

Подсказка 5

Попробуйте оценить количество корней уравнения, исследовав некоторую функцию на возрастание/убывание.

Показать ответ и решение

Из второго уравнения системы получаем неравенство y ≥ −x∕4  . Возводим второе уравнение в квадрат.

  2        2   2       x2
− x − 3xy− y = 4y + 2xy+ 4

         5x2
5y2+5xy+ -4-= 0

y = − x
    2

Подставляем результат в первое уравнение системы:

(2− √3)x = 3−x∕2+ 4−x∕2

(2 − √3)x = (√3)− x+2−x

Заметим, что

             √- x    √- x
(2− √3)x = (2−-3)-⋅√(2+x-3)-=----1√--x = (2 +√3)−x
              (2+  3)       (2+  3)

поэтому

    √-− x  √ -−x   −x
(2+  3)  = ( 3)  + 2

Поделим обе части на (2+ √3)−x ⁄= 0

   (  √3  )−x  (   2  )−x
1=   2+√3-   +  2-+√3-

Функция слева представляет собой сумму монотонно убывающих функций, значит, корней у данного уравнения не более одного. Этот корень достаточно легко угадывается, x =− 1  , откуда y =1∕2  , что удовлетворяет ОДЗ.

Ответ:

 (−1;1∕2)

Ошибка.
Попробуйте повторить позже

Задача 16#34757

Решите уравнение

              | 22    2     2       |  |xy|
|1− x− y − xy|+ |2x y − 2x y− 2xy + 2xy− 9|+ xy = −1.

Источники: ПВГ-2012, 11.5 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Слева модули, а справа (-1) –> намёк на оценку! Вот только одно слагаемое в левой части выбивается! Однако взгляните на него повнимательнее: может мы точно знаем, какие оно может принимать значения?

Подсказка 2

Если это выражение равно 1, то оценка даст нам явное противоречие, а если (-1), то красивую системку! Только не забудьте, что эти значения наше выражение принимает при определённых условиях – прикрепите их к системе. Остаётся решить системку! Возможно, уравнения могут вас пугать, но вот как работать с выражением 1-x-y-xy вы должны помнить ещё с вебов по тождественным преобразованиям!

Подсказка 3

Раскладываем на множители и замечаем, что сами x и y выразить трудновато, но зато легко можно найти значение xy. А зная его, и значение x+y легко ищется! А уже система из суммы и произведения легко решается либо обычной подстановкой, либо сведением к квадратному уравнению (вспомните теорему Виета)

Показать ответ и решение

Заметим, что |xy|= ±1
xy  , откуда левая часть не меньше − 1  , равенство достигается тогда и только тогда, когда

(| 1 − x − y− xy = 0                 (| (x− 1)(y− 1)=2xy
{ 2x2y2− 2x2y− 2xy2+2xy− 9= 0   ⇐⇒   { 2xy(x− 1)(y − 1)= 9
|(                                   |(
  xy <0                               xy <0

Из первых двух уравнений следует, что (2xy)2 =9  , а с учётом третьего неравенства получаем xy = − 3
     2  . Для решения системы осталось подставить это в первое уравнение, потому что второе и третье условия мы уже учли

{ 1− x− y+ 3= 0        { x+ y = 5
  xy = − 3 2      ⇐⇒     xy = − 32
       2                      2

По обратной теореме Виета если решения системы есть, то числа x,y  будут корнями уравнения t2− 52t− 32 = 0 ⇐⇒   t=− 12 или t=3  . Осталось не забыть, что система симметрична (x;y)<− > (y;x)  , и записать обе пары в ответ.

Ответ:

 (3;− 1),(− 1;3)
    2   2

Ошибка.
Попробуйте повторить позже

Задача 17#33909

Решите неравенство

∘----2---   2
 x − x + 2+ x > 4− 5|x− 2|.

Источники: ПВГ-2011 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Раз мы решаем неравенство, то что стоит записать первым шагом?

Подсказка 2

Да, решение чаще всего стоит начинать именно с ОДЗ. Кроме того, что можно сказать о модуле на ОДЗ?

Подсказка 3

С учетом ОДЗ модуль раскрывается однозначно. Все, что без корня также перенесем вправо. И теперь получилось обычное неравенство с корнем - какие случаи обычно стоит рассмотреть?

Подсказка 4

Разбиваем на случаи: правая часть ≥ 0 и правая часть <0. Может быть, можно как-то сразу упростить себе жизнь, если сразу что-то учесть?

Подсказка 5

Какой знак принимает правая часть на ОДЗ? И какое значение х стоит рассмотреть отдельно из-за этого?

Показать ответ и решение

ОДЗ: − x2+x +2 ≥0  ⇐⇒   x∈ [− 1,2]  , то есть мы знаем, что на ОДЗ x− 2≤0  .

Тогда раскроем модуль

∘------------              2
 − (x +1)(x − 2)=> 4+ 5x− 10− x = −(x− 2)(x− 3)

При x< 2  правая часть отрицательна, а левая неотрицательна, так что неравенство выполнено. Если же x= 2  , то обе части равны нулю, что не подходит в силу строгого знака.

Ответ:

 [−1;2)

Ошибка.
Попробуйте повторить позже

Задача 18#67701

Решите неравенство

∘ ---2----  2
  x− x +2+ x > 4− 5|x− 2|

Источники: ПВГ-2011, 11.3 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Прежде чем раскрывать модуль, давайте попробуем сначала разложить квадратный трёхчлен на множители. Что можно сказать про модуль, когда мы запишем ограничение на корень?

Подсказка 2

Верно, после этого модуль однозначно раскрывается и справа, и слева у нас получаются квадратные трёхчлены, но слева под корнем. В квадрат мы возводить конечно не будем обе части, потому что появятся четвёртые степени. Давайте же снова разложим на множители квадратные трёхчлены. Что тогда можно сказать про знак второй части, учитывая ограничение?

Подсказка 3

Да, правая часть будет отрицательна там, а корень у нас всегда положительный, и, следовательно, больше нуля. Но при x=2 у нас получается равенство, а знак строгий. То есть x=2 не включаем в ответ.

Показать ответ и решение

Из ОДЗ получим − x2+x +2 ≥0  ⇐⇒   x∈ [− 1,2]  . Отсюда |x− 2|= 2− x  , подставим

∘ ----2---    2
  x− x +2 >− x +5x− 6

Нетрудно видеть, что x =2  является корнем для обеих частей неравенства, поэтому в этой точке достигается равенство. Также заметим, что при x∈[−1,2)  левая часть неотрицательна, при этом правая часть отрицательна, поскольку − x2+ 5x − 6 =(2− x)(x− 3)  — первая скобка будет положительна, а вторая отрицательна на этом промежутке. Значит, на [−1,2)  неравенство выполнено, а в x= 2  нет.

Ответ:

 [−1;2)

Ошибка.
Попробуйте повторить позже

Задача 19#48859

Решите уравнение

∘ -------- ∘ -----2
  1− |x − 2|+ 4x− x = 3+|x− 2|.

Источники: ПВГ-2010, 11.2 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Попробуйте внимательно посмотреть, вдруг какое-то выражение повторяется довольно часто? Что можно сделать в таком случае?

Подсказка 2

Да, можно сделать замену! Но тогда нужно придумать, как полностью избавиться от х.

Подсказка 3

В замене просто х, а нужно получить х², что для этого можно сделать?

Подсказка 4

Теперь получилось уравнение с корнями, что можно попробовать, чтобы его решить?

Подсказка 5

Конечно, можно попробовать возвести уравнение в квадрат, но чтобы полностью избавиться от корней, придется сделать это минимум два раза — а искать корни многочлена четвёртой степени явно не предел наших мечтаний, не так ли?

Подсказка 6

Раз уж решаем уравнение, то было бы неплохо найти ОДЗ — вдруг она как-то сможет помочь?

Подсказка 7

Самое время подумать, как же ведут себя части уравнения на ОДЗ!

Подсказка 8

Слева функция убывает, а справа возрастает. А сколько раз в таком случае они могут пересечься? Осталось только подобрать ответ :)

Показать ответ и решение

Заметим, что 4x − x2 =4− (4− 4x +x2)= 4− (x− 2)2  , сделаем замену t= |x − 2|≥ 0

√ ---- ∘ ---2-
  1− t+  4− t= 3+ t

Заметим, что из ОДЗ t∈ [0,1]  , а на этом отрезке оба корня в левой части строго убывают. В это же время функция 3+ t  монотонно возрастает и уравнение может иметь не более одного решения. Нетрудно видеть, что это t= 0  ⇐⇒   x= 2.

Ответ:

 2

Ошибка.
Попробуйте повторить позже

Задача 20#90834

Один из корней квадратного уравнения px2+ qx+ 1= 0 (p< 0)  равен 2010.  Решите неравенство:

    √-
x +q x +p >0.

Источники: ПВГ 2010

Подсказки к задаче

Подсказка 1

Какие значения может принимать х в нашем неравенстве?

Подсказка 2

Есть смысл разбить задачу на два случая, в зависимости от х: какое/какие значения имеет смысл рассмотреть отдельно?

Подсказка 3

Будет ли х=0 входить в решения?

Подсказка 4

Теперь достаточно проанализировать только положительные х. Что можно сделать с данным неравенством, чтобы оно стало похоже на стандартное квадратное?

Подсказка 5

Есть х и √х, почему бы не сделать замену?

Подсказка 6

Теперь внимательно посмотрите на полученные уравнение и неравенство, не замечаете некоторую схожесть? Что можно сделать, чтобы они стали практически один в один?

Подсказка 7

Да, взять другую замену! Только теперь с обратной пропорциональностью. Теперь перед нами дробно-рациональное неравенство — что можно сделать дальше?

Подсказка 8

Теперь нужно разложить числитель на множители, что в этом может помочь?

Подсказка 9

Зная один корень уравнения, можно определить и второй. А значит, и разложить трёхчлен на множители! Осталось только решить неравенство с учётом знаков р и замены. И не забудьте про обратную замену ;)

Показать ответ и решение

С учётом ОДЗ корня x≥ 0  . Поскольку p< 0  , то при x =0  неравенство не выполняется. Поэтому рассмотрим t= 1√-> 0
    x  , откуда неравенство примет вид:

1   q           2
t2-+ t + p>0 ⇐⇒ pt +qt+ 1> 0

Знак сохраняется в силу умножения на положительное число, видим, что выражение совпало с первоначальным уравнением, откуда имеем корень t= 2010  . Далее снова при условии p< 0  второй корень изначально уравнения отрицателен (произведение равно 1∕p  ), откуда неравенство превращается в равенство только при x= 201102  , в силу того, что при больших x  оно выполняется, и получается нужный ответ.

Ответ:

 x >-1---
    20102

Рулетка
Вы можете получить скидку в рулетке!