Тема . ПВГ (Покори Воробьёвы Горы)

Уравнения, неравенства и системы на ПВГ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#70344

Решите уравнение

(      2)(      2       10)  (      2       6)2
1 +x+ x   1+x +x + ...+ x  =  1+ x+x  +...+ x

Источники: ПВГ-2015, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Скобка (1+x+...xⁿ) кажется очень знакомой, где мы её могли видеть?...

Подсказка 2

Точно! В формула разности n-ых степеней, ведь xⁿ - 1 = (x-1)(xⁿ⁻¹+...+x+1). То есть у нас часть произведения. Что же хочется сделать?...

Подсказка 3

Верно! Хочется дополнить до полного произведения. Домножим обе части на (x-1)(x-1). Что мы имеем теперь?

Подсказка 4

(x¹¹-1)(x³-1) = (x-7)². Осталось немного...

Подсказка 5

Раскройте скобки, приведите подобные и получите красивую штуку! Успехов!

Показать ответ и решение

Вспомним формулы сокращенного умножения. Домножим на (x− 1)2 ⁄= 0  , но учтём потом, что x =1  не является корнем.

      (      2)     (      2       10)       2(       2      6)2
(x− 1)1 +x+ x  (x − 1) 1+ x+x +...+ x   =(x− 1) 1+ x+ x +...+x

(3   )(11   )  (7   )2
x − 1  x − 1 = x − 1

 14  11   3     14   7
x  − x − x +1 =x  − 2x +1

x11+ x3− 2x7 =0

x= 0  — корень. Поделим на x3 ⁄= 0

x8 − 2x4+ 1= 0

(     )2
 x4− 1  =0  ⇐ ⇒  x =±1

x= 1  — посторонний корень

Ответ:

 {−1;0}

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!