Тема . ПВГ (Покори Воробьёвы Горы)

Последовательности и прогрессии на ПВГ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71666

Положительные числа b,b,b,b ,b
1 2  3 4 5  составляют геометрическую прогрессию. Сумма логарифмов по основанию 3  от этих чисел равна 10.  Найдите эти числа, если

log3b1⋅log3b5 =3
Подсказки к задаче

Подсказка 1

Вспомним, что числа образуют геометрическую прогрессию! Поэтому все числа можно выразить через первый член прогрессии. В таком случае, что можно получить из условия того, что сумма логарифмов по основанию 3 от этих чисел равна 10?

Подсказка 2

Да, мы получим, что произведение первого члена и знаменателя прогрессии равно 9, а еще можно выразить первый член прогрессии через её знаменатель. Теперь воспользуемся вторым условием! Можно ли найти с помощью него знаменатель прогрессии?

Подсказка 3

Да, можно! Будем пользоваться свойствами логарифма и преобразовывать выражение. Тогда мы найдем знаменатель прогрессии и уже через него все члены последовательности!

Показать ответ и решение

Пусть q  — знаменатель прогрессии. Так как члены прогрессии положительные, то q > 0  . Тогда члены прогрессии:        2    3   4
b1, qb1, qb1, qb1, q b1

По условию

                  2       3        4
log3b1+ log3qb1+log3q b1+log3qb1+ log3qb1 = 10

   5  10
log3b1 ⋅q  = 10

   2             9-
b1q =9  =⇒   b1 = q2

Подставляя во второе условие получаем

    9        9
log3q2 ⋅log3q4⋅q2 =3

log3-92 ⋅log3 9q2 = 3
   q

(2− log q2)⋅(2+ log q2)= 3
      3         3

log2q2 = 1
  3

q2 = 3±1

И так как

q >0,

то

q = 3±0.5; b1 = 9
             q2

Легко видеть, что прогрессии

   1.5  2  2.5  3
3, 3 , 3 , 3 , 3

 3  2.5  2  1.5
3 , 3 , 3 , 3 , 3

удовлетворяют условию про сумму логарифмов и условию на первый и пятый члены.

В ответ можно записать найденные числа, они одинаковые для обеих подходящих прогрессий.

Ответ:

 3, 31.5, 32, 32.5, 33

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!