Тождественные преобразования, функции, уравнения и системы на Ломоносове
Ошибка.
Попробуйте повторить позже
Вычислите , если известно, что это число рациональное и что
— натуральное.
Подсказка 1
Мда, так себе условие... Как бы нам из него что-то достать интересное. Возвести в квадрат, получить произведение двух корней — плохо. Надо как-то по отдельности их что-ли в квадрат возвести. Как бы это сделать? Может что-то обозначить...
Подсказка 2
Так и сделаем. Пусть √n + √(n+254) = a. Тогда √(n+254) = a - √n. Вот щас уже можно что-то сделать...
Подсказка 3:
Возведём в квадрат. Получим, что n + 254 = a² + n - 2a√n. Мы знаем, что a — рационально по условию, n — натурально. Какой вывод можно сделать из этого?
Подсказка 4:
Докажите, что √n — натурально. В каком виде тогда можно представить числа n и n+254?
Подсказка 5:
Верно! n = k², n + 254 = m², где n, m ∈ N. Осталось вспомнить формулу разности квадратов и понять, что 524 = 131 * 4 = 2*2*131 — разложили на простые. С помощью этого дорешайте задачу, опираясь на натуральность множителей)
Пусть искомое число равно . Имеем
По условию рационально, поэтому и
рационально. Значит,
. Тогда число
тоже рационально, поэтому
. Значит,
Заметим, что числа и
одинаковой чётности, а число 131 простое. Следовательно,
и
. Оба
равенства выполнены при
. Итак,
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!